transformers/tests/models/deta/test_image_processing_deta.py

490 lines
22 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pathlib
import unittest
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class DetaImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_rescale=True,
rescale_factor=1 / 255,
do_pad=True,
):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to DetaImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
if w < h:
expected_height = int(self.size["shortest_edge"] * h / w)
expected_width = self.size["shortest_edge"]
elif w > h:
expected_height = self.size["shortest_edge"]
expected_width = int(self.size["shortest_edge"] * w / h)
else:
expected_height = self.size["shortest_edge"]
expected_width = self.size["shortest_edge"]
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
return self.num_channels, height, width
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class DetaImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = DetaImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = DetaImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
self.assertEqual(image_processor.do_pad, True)
@slow
def test_call_pytorch_with_coco_detection_annotations(self):
# prepare image and target
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"image_id": 39769, "annotations": target}
# encode them
image_processing = DetaImageProcessor()
encoding = image_processing(images=image, annotations=target, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
@slow
def test_call_pytorch_with_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
# encode them
image_processing = DetaImageProcessor(format="coco_panoptic")
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify masks
expected_masks_sum = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
@slow
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_detection_annotations with Detr->Deta
def test_batched_coco_detection_annotations(self):
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
annotations_0 = {"image_id": 39769, "annotations": target}
annotations_1 = {"image_id": 39769, "annotations": target}
# Adjust the bounding boxes for the resized image
w_0, h_0 = image_0.size
w_1, h_1 = image_1.size
for i in range(len(annotations_1["annotations"])):
coords = annotations_1["annotations"][i]["bbox"]
new_bbox = [
coords[0] * w_1 / w_0,
coords[1] * h_1 / h_0,
coords[2] * w_1 / w_0,
coords[3] * h_1 / h_0,
]
annotations_1["annotations"][i]["bbox"] = new_bbox
images = [image_0, image_1]
annotations = [annotations_0, annotations_1]
image_processing = DetaImageProcessor()
encoding = image_processing(
images=images,
annotations=annotations,
return_segmentation_masks=True,
return_tensors="pt", # do_convert_annotations=True
)
# Check the pixel values have been padded
postprocessed_height, postprocessed_width = 800, 1066
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
# Check the bounding boxes have been adjusted for padded images
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
expected_boxes_0 = torch.tensor(
[
[0.6879, 0.4609, 0.0755, 0.3691],
[0.2118, 0.3359, 0.2601, 0.1566],
[0.5011, 0.5000, 0.9979, 1.0000],
[0.5010, 0.5020, 0.9979, 0.9959],
[0.3284, 0.5944, 0.5884, 0.8112],
[0.8394, 0.5445, 0.3213, 0.9110],
]
)
expected_boxes_1 = torch.tensor(
[
[0.4130, 0.2765, 0.0453, 0.2215],
[0.1272, 0.2016, 0.1561, 0.0940],
[0.3757, 0.4933, 0.7488, 0.9865],
[0.3759, 0.5002, 0.7492, 0.9955],
[0.1971, 0.5456, 0.3532, 0.8646],
[0.5790, 0.4115, 0.3430, 0.7161],
]
)
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))
# Check the masks have also been padded
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
# format and not in the range [0, 1]
encoding = image_processing(
images=images,
annotations=annotations,
return_segmentation_masks=True,
do_convert_annotations=False,
return_tensors="pt",
)
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
# Convert to absolute coordinates
unnormalized_boxes_0 = torch.vstack(
[
expected_boxes_0[:, 0] * postprocessed_width,
expected_boxes_0[:, 1] * postprocessed_height,
expected_boxes_0[:, 2] * postprocessed_width,
expected_boxes_0[:, 3] * postprocessed_height,
]
).T
unnormalized_boxes_1 = torch.vstack(
[
expected_boxes_1[:, 0] * postprocessed_width,
expected_boxes_1[:, 1] * postprocessed_height,
expected_boxes_1[:, 2] * postprocessed_width,
expected_boxes_1[:, 3] * postprocessed_height,
]
).T
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
expected_boxes_0 = torch.vstack(
[
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
]
).T
expected_boxes_1 = torch.vstack(
[
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
]
).T
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
@slow
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_panoptic_annotations with Detr->Deta
def test_batched_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
w_0, h_0 = image_0.size
w_1, h_1 = image_1.size
for i in range(len(annotation_1["segments_info"])):
coords = annotation_1["segments_info"][i]["bbox"]
new_bbox = [
coords[0] * w_1 / w_0,
coords[1] * h_1 / h_0,
coords[2] * w_1 / w_0,
coords[3] * h_1 / h_0,
]
annotation_1["segments_info"][i]["bbox"] = new_bbox
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
images = [image_0, image_1]
annotations = [annotation_0, annotation_1]
# encode them
image_processing = DetaImageProcessor(format="coco_panoptic")
encoding = image_processing(
images=images,
annotations=annotations,
masks_path=masks_path,
return_tensors="pt",
return_segmentation_masks=True,
)
# Check the pixel values have been padded
postprocessed_height, postprocessed_width = 800, 1066
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
# Check the bounding boxes have been adjusted for padded images
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
expected_boxes_0 = torch.tensor(
[
[0.2625, 0.5437, 0.4688, 0.8625],
[0.7719, 0.4104, 0.4531, 0.7125],
[0.5000, 0.4927, 0.9969, 0.9854],
[0.1688, 0.2000, 0.2063, 0.0917],
[0.5492, 0.2760, 0.0578, 0.2187],
[0.4992, 0.4990, 0.9984, 0.9979],
]
)
expected_boxes_1 = torch.tensor(
[
[0.1576, 0.3262, 0.2814, 0.5175],
[0.4634, 0.2463, 0.2720, 0.4275],
[0.3002, 0.2956, 0.5985, 0.5913],
[0.1013, 0.1200, 0.1238, 0.0550],
[0.3297, 0.1656, 0.0347, 0.1312],
[0.2997, 0.2994, 0.5994, 0.5987],
]
)
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))
# Check the masks have also been padded
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
# format and not in the range [0, 1]
encoding = image_processing(
images=images,
annotations=annotations,
masks_path=masks_path,
return_segmentation_masks=True,
do_convert_annotations=False,
return_tensors="pt",
)
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
# Convert to absolute coordinates
unnormalized_boxes_0 = torch.vstack(
[
expected_boxes_0[:, 0] * postprocessed_width,
expected_boxes_0[:, 1] * postprocessed_height,
expected_boxes_0[:, 2] * postprocessed_width,
expected_boxes_0[:, 3] * postprocessed_height,
]
).T
unnormalized_boxes_1 = torch.vstack(
[
expected_boxes_1[:, 0] * postprocessed_width,
expected_boxes_1[:, 1] * postprocessed_height,
expected_boxes_1[:, 2] * postprocessed_width,
expected_boxes_1[:, 3] * postprocessed_height,
]
).T
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
expected_boxes_0 = torch.vstack(
[
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
]
).T
expected_boxes_1 = torch.vstack(
[
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
]
).T
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))