315 lines
13 KiB
Python
315 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import copy
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available
|
|
from transformers.testing_utils import (
|
|
DUMMY_UNKNOWN_IDENTIFIER,
|
|
SMALL_MODEL_IDENTIFIER,
|
|
RequestCounter,
|
|
require_tensorflow_probability,
|
|
require_tf,
|
|
slow,
|
|
)
|
|
|
|
from ..bert.test_modeling_bert import BertModelTester
|
|
|
|
|
|
if is_tf_available():
|
|
from transformers import (
|
|
TFAutoModel,
|
|
TFAutoModelForCausalLM,
|
|
TFAutoModelForMaskedLM,
|
|
TFAutoModelForPreTraining,
|
|
TFAutoModelForQuestionAnswering,
|
|
TFAutoModelForSeq2SeqLM,
|
|
TFAutoModelForSequenceClassification,
|
|
TFAutoModelForTableQuestionAnswering,
|
|
TFAutoModelForTokenClassification,
|
|
TFAutoModelWithLMHead,
|
|
TFBertForMaskedLM,
|
|
TFBertForPreTraining,
|
|
TFBertForQuestionAnswering,
|
|
TFBertForSequenceClassification,
|
|
TFBertModel,
|
|
TFFunnelBaseModel,
|
|
TFFunnelModel,
|
|
TFGPT2LMHeadModel,
|
|
TFRobertaForMaskedLM,
|
|
TFT5ForConditionalGeneration,
|
|
TFTapasForQuestionAnswering,
|
|
)
|
|
from transformers.models.auto.modeling_tf_auto import (
|
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
|
TF_MODEL_FOR_PRETRAINING_MAPPING,
|
|
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_MAPPING,
|
|
)
|
|
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
|
|
|
|
class NewModelConfig(BertConfig):
|
|
model_type = "new-model"
|
|
|
|
|
|
if is_tf_available():
|
|
|
|
class TFNewModel(TFBertModel):
|
|
config_class = NewModelConfig
|
|
|
|
|
|
@require_tf
|
|
class TFAutoModelTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google-bert/bert-base-cased"
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertModel)
|
|
|
|
@slow
|
|
def test_model_for_pretraining_from_pretrained(self):
|
|
model_name = "google-bert/bert-base-cased"
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForPreTraining.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForPreTraining)
|
|
|
|
@slow
|
|
def test_model_for_causal_lm(self):
|
|
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, GPT2Config)
|
|
|
|
model = TFAutoModelForCausalLM.from_pretrained(model_name)
|
|
model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFGPT2LMHeadModel)
|
|
|
|
@slow
|
|
def test_lmhead_model_from_pretrained(self):
|
|
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelWithLMHead.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForMaskedLM)
|
|
|
|
@slow
|
|
def test_model_for_masked_lm(self):
|
|
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForMaskedLM.from_pretrained(model_name)
|
|
model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForMaskedLM)
|
|
|
|
@slow
|
|
def test_model_for_encoder_decoder_lm(self):
|
|
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, T5Config)
|
|
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFT5ForConditionalGeneration)
|
|
|
|
@slow
|
|
def test_sequence_classification_model_from_pretrained(self):
|
|
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
for model_name in ["google-bert/bert-base-uncased"]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForSequenceClassification)
|
|
|
|
@slow
|
|
def test_question_answering_model_from_pretrained(self):
|
|
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
for model_name in ["google-bert/bert-base-uncased"]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForQuestionAnswering)
|
|
|
|
@slow
|
|
@require_tensorflow_probability
|
|
def test_table_question_answering_model_from_pretrained(self):
|
|
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, TapasConfig)
|
|
|
|
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name)
|
|
model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained(
|
|
model_name, output_loading_info=True
|
|
)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFTapasForQuestionAnswering)
|
|
|
|
def test_from_pretrained_identifier(self):
|
|
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(model, TFBertForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14410)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
|
|
|
|
def test_from_identifier_from_model_type(self):
|
|
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
|
|
self.assertIsInstance(model, TFRobertaForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14410)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
|
|
|
|
def test_from_pretrained_with_tuple_values(self):
|
|
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
|
|
model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny")
|
|
self.assertIsInstance(model, TFFunnelModel)
|
|
|
|
config = copy.deepcopy(model.config)
|
|
config.architectures = ["FunnelBaseModel"]
|
|
model = TFAutoModel.from_config(config)
|
|
model.build_in_name_scope()
|
|
|
|
self.assertIsInstance(model, TFFunnelBaseModel)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
model = TFAutoModel.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(model, TFFunnelBaseModel)
|
|
|
|
def test_new_model_registration(self):
|
|
try:
|
|
AutoConfig.register("new-model", NewModelConfig)
|
|
|
|
auto_classes = [
|
|
TFAutoModel,
|
|
TFAutoModelForCausalLM,
|
|
TFAutoModelForMaskedLM,
|
|
TFAutoModelForPreTraining,
|
|
TFAutoModelForQuestionAnswering,
|
|
TFAutoModelForSequenceClassification,
|
|
TFAutoModelForTokenClassification,
|
|
]
|
|
|
|
for auto_class in auto_classes:
|
|
with self.subTest(auto_class.__name__):
|
|
# Wrong config class will raise an error
|
|
with self.assertRaises(ValueError):
|
|
auto_class.register(BertConfig, TFNewModel)
|
|
auto_class.register(NewModelConfig, TFNewModel)
|
|
# Trying to register something existing in the Transformers library will raise an error
|
|
with self.assertRaises(ValueError):
|
|
auto_class.register(BertConfig, TFBertModel)
|
|
|
|
# Now that the config is registered, it can be used as any other config with the auto-API
|
|
tiny_config = BertModelTester(self).get_config()
|
|
config = NewModelConfig(**tiny_config.to_dict())
|
|
|
|
model = auto_class.from_config(config)
|
|
model.build_in_name_scope()
|
|
|
|
self.assertIsInstance(model, TFNewModel)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
new_model = auto_class.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(new_model, TFNewModel)
|
|
|
|
finally:
|
|
if "new-model" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["new-model"]
|
|
for mapping in (
|
|
TF_MODEL_MAPPING,
|
|
TF_MODEL_FOR_PRETRAINING_MAPPING,
|
|
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
|
):
|
|
if NewModelConfig in mapping._extra_content:
|
|
del mapping._extra_content[NewModelConfig]
|
|
|
|
def test_repo_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
|
|
):
|
|
_ = TFAutoModel.from_pretrained("bert-base")
|
|
|
|
def test_revision_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
|
|
):
|
|
_ = TFAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
|
|
|
|
def test_model_file_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError,
|
|
"hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
|
|
):
|
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model")
|
|
|
|
def test_model_from_pt_suggestion(self):
|
|
with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"):
|
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
|
|
|
|
def test_cached_model_has_minimum_calls_to_head(self):
|
|
# Make sure we have cached the model.
|
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
|
|
with RequestCounter() as counter:
|
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
|
|
self.assertEqual(counter["GET"], 0)
|
|
self.assertEqual(counter["HEAD"], 1)
|
|
self.assertEqual(counter.total_calls, 1)
|
|
|
|
# With a sharded checkpoint
|
|
_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
|
|
with RequestCounter() as counter:
|
|
_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
|
|
self.assertEqual(counter["GET"], 0)
|
|
self.assertEqual(counter["HEAD"], 1)
|
|
self.assertEqual(counter.total_calls, 1)
|