110 lines
3.6 KiB
Python
110 lines
3.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import time
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
|
|
from ..test_modeling_common import ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.generation import (
|
|
MaxLengthCriteria,
|
|
MaxNewTokensCriteria,
|
|
MaxTimeCriteria,
|
|
StoppingCriteriaList,
|
|
validate_stopping_criteria,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class StoppingCriteriaTestCase(unittest.TestCase):
|
|
def _get_tensors(self, length):
|
|
batch_size = 3
|
|
vocab_size = 250
|
|
|
|
input_ids = ids_tensor((batch_size, length), vocab_size)
|
|
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
|
|
return input_ids, scores
|
|
|
|
def test_list_criteria(self):
|
|
input_ids, scores = self._get_tensors(5)
|
|
|
|
criteria = StoppingCriteriaList(
|
|
[
|
|
MaxLengthCriteria(max_length=10),
|
|
MaxTimeCriteria(max_time=0.1),
|
|
]
|
|
)
|
|
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
input_ids, scores = self._get_tensors(9)
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
input_ids, scores = self._get_tensors(10)
|
|
self.assertTrue(all(criteria(input_ids, scores)))
|
|
|
|
def test_max_length_criteria(self):
|
|
criteria = MaxLengthCriteria(max_length=10)
|
|
|
|
input_ids, scores = self._get_tensors(5)
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
input_ids, scores = self._get_tensors(9)
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
input_ids, scores = self._get_tensors(10)
|
|
self.assertTrue(all(criteria(input_ids, scores)))
|
|
|
|
def test_max_new_tokens_criteria(self):
|
|
criteria = MaxNewTokensCriteria(start_length=5, max_new_tokens=5)
|
|
|
|
input_ids, scores = self._get_tensors(5)
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
input_ids, scores = self._get_tensors(9)
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
input_ids, scores = self._get_tensors(10)
|
|
self.assertTrue(all(criteria(input_ids, scores)))
|
|
|
|
criteria_list = StoppingCriteriaList([criteria])
|
|
self.assertEqual(criteria_list.max_length, 10)
|
|
|
|
def test_max_time_criteria(self):
|
|
input_ids, scores = self._get_tensors(5)
|
|
|
|
criteria = MaxTimeCriteria(max_time=0.1)
|
|
self.assertFalse(all(criteria(input_ids, scores)))
|
|
|
|
criteria = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2)
|
|
self.assertTrue(all(criteria(input_ids, scores)))
|
|
|
|
def test_validate_stopping_criteria(self):
|
|
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10)
|
|
|
|
with self.assertWarns(UserWarning):
|
|
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11)
|
|
|
|
stopping_criteria = validate_stopping_criteria(StoppingCriteriaList(), 11)
|
|
|
|
self.assertEqual(len(stopping_criteria), 1)
|