transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py

933 lines
40 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import copy
import gc
import glob
import inspect
import math
import multiprocessing
import os
import tempfile
import traceback
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from huggingface_hub import snapshot_download
from transformers import Wav2Vec2Config, is_tf_available
from transformers.testing_utils import (
CaptureLogger,
is_flaky,
is_pt_tf_cross_test,
require_librosa,
require_pyctcdecode,
require_tf,
run_test_in_subprocess,
slow,
)
from transformers.utils import is_librosa_available, is_pyctcdecode_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoFeatureExtractor,
TFWav2Vec2ForCTC,
TFWav2Vec2ForSequenceClassification,
TFWav2Vec2Model,
Wav2Vec2Processor,
)
from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices
if is_pyctcdecode_available():
import pyctcdecode.decoder
from transformers import Wav2Vec2ProcessorWithLM
from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
if is_librosa_available():
import librosa
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
file_path = glob.glob(downloaded_folder + "/*")[0]
sample = librosa.load(file_path, sr=16_000)[0]
model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(sample, return_tensors="tf").input_values
logits = model(input_values).logits
# use a spawn pool, which should trigger a warning if different than fork
with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
transcription = processor.batch_decode(logits.numpy(), pool).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
# force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
multiprocessing.set_start_method("spawn", force=True)
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
transcription = processor.batch_decode(logits.numpy()).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
@require_tf
class TFWav2Vec2ModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=1024,
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0
attention_mask = tf.ones_like(input_values)
config = Wav2Vec2Config(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
do_stable_layer_norm=self.do_stable_layer_norm,
)
return config, input_values, attention_mask
def create_and_check_model(self, config, input_values, attention_mask):
model = TFWav2Vec2Model(config)
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
config.layerdrop = 0.0
model = TFWav2Vec2Model(config)
input_values = input_values[:3]
attention_mask = tf.ones_like(input_values)
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)
# convert values that are over input_lengths to padding
input_values = input_values * length_mask
attention_mask = attention_mask * length_mask
batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice, training=False).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = TFWav2Vec2ForCTC(config)
input_values = input_values[:3]
attention_mask = tf.ones_like(input_values)
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)
# convert values that are over input_lengths to padding
input_values = input_values * length_mask
attention_mask = attention_mask * length_mask
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss
self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2)
def check_seq_classifier_loss(self, loss, config, input_values, *args):
model = TFWav2Vec2ForSequenceClassification(config)
input_values = input_values[:3]
attention_mask = tf.ones(input_values.shape, dtype=tf.int32)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = tf.random.uniform((input_values.shape[0],), maxval=len(model.config.id2label), dtype=tf.int32)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
training = False
masked_loss = (
model(input_values, attention_mask=attention_mask, labels=labels, training=training).loss.numpy().item()
)
unmasked_loss = model(input_values, labels=labels, training=training).loss.numpy().item()
assert isinstance(masked_loss, float)
assert isinstance(unmasked_loss, float)
assert masked_loss != unmasked_loss
def check_training(self, config, input_values, *args):
model = TFWav2Vec2ForCTC(config)
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)
input_values = input_values * length_mask
pad_size = max(max_length_labels) - labels.shape[1]
labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100)
loss = model(input_values, labels=labels, training=True).loss
self.parent.assertFalse(tf.math.is_inf(loss))
def check_labels_out_of_vocab(self, config, input_values, *args):
model = TFWav2Vec2ForCTC(config)
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 500)
with pytest.raises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_tf
class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
)
pipeline_model_mapping = (
{"audio-classification": TFWav2Vec2ForSequenceClassification, "feature-extraction": TFWav2Vec2Model}
if is_tf_available()
else {}
)
test_resize_embeddings = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFWav2Vec2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite because input_values != input_ids
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# overwrite because input_values != input_ids
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs_dict = model(inputs)
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
input_values = inputs_keywords.pop("input_values", None)
outputs_keywords = model(input_values, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_hidden_states_output(config, inputs_dict, model_class):
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
hidden_states = outputs.hidden_states
self.assertEqual(config.output_attentions, False)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.output_seq_length, self.model_tester.hidden_size],
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(config, inputs_dict, model_class)
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(config, inputs_dict, model_class)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
@is_flaky()
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
def test_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_training(*config_and_inputs)
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_model_common_attributes(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_dataset_conversion(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_keras_fit(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
# We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with
# the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT
import torch
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
self._make_attention_mask_non_null(inputs_dict)
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
tf_model = model_class(config)
pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
)
pt_model = transformers.load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
@require_tf
class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
)
test_resize_embeddings = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFWav2Vec2ModelTester(
self,
conv_stride=(3, 3, 3),
feat_extract_norm="layer",
do_stable_layer_norm=True,
scope="robust",
)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
# overwrite because input_values != input_ids
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# overwrite because input_values != input_ids
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs_dict = model(inputs)
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
input_values = inputs_keywords.pop("input_values", None)
outputs_keywords = model(input_values, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_hidden_states_output(config, inputs_dict, model_class):
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
hidden_states = outputs.hidden_states
self.assertEqual(config.output_attentions, False)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.output_seq_length, self.model_tester.hidden_size],
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(config, inputs_dict, model_class)
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(config, inputs_dict, model_class)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
# TODO (Joao): fix me
@unittest.skip("Broke with TF 2.10")
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
def test_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_training(*config_and_inputs)
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_model_common_attributes(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_dataset_conversion(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_keras_fit(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
# We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with
# the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT
import torch
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
self._make_attention_mask_non_null(inputs_dict)
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
tf_model = model_class(config)
pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
)
pt_model = transformers.load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
@require_tf
class TFWav2Vec2UtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
self.assertListEqual(
tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)]
)
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in tf.reduce_sum(mask, -1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
@require_tf
@slow
class TFWav2Vec2ModelIntegrationTest(unittest.TestCase):
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _load_superb(self, task, num_samples):
ds = load_dataset("anton-l/superb_dummy", task, split="test")
return ds[:num_samples]
def test_inference_ctc_normal(self):
model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(1)
input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values
logits = model(input_values).logits
predicted_ids = tf.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_normal_batched(self):
model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(2)
input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values
logits = model(input_values).logits
predicted_ids = tf.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_robust_batched(self):
model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = tf.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
" him with the thousands of spectators were trivialities not worth thinking about",
"his instant panic was followed by a small sharp blow high on his chest",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm(self):
downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
file_path = glob.glob(downloaded_folder + "/*")[0]
sample = librosa.load(file_path, sr=16_000)[0]
model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(sample, return_tensors="tf").input_values
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_pool(self):
downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
file_path = glob.glob(downloaded_folder + "/*")[0]
sample = librosa.load(file_path, sr=16_000)[0]
model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(sample, return_tensors="tf").input_values
logits = model(input_values).logits
# test user-managed pool
with multiprocessing.get_context("fork").Pool(2) as pool:
transcription = processor.batch_decode(logits.numpy(), pool).text
self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
# user-managed pool + num_processes should trigger a warning
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
2
) as pool:
transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text
self.assertIn("num_process", cl.out)
self.assertIn("it will be ignored", cl.out)
self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_invalid_pool(self):
run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
def test_inference_keyword_spotting(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
input_data = self._load_superb("ks", 4)
inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
outputs = model(input_values, attention_mask)
predicted_logits, predicted_ids = (
tf.math.reduce_max(outputs.logits, axis=-1),
tf.argmax(outputs.logits, axis=-1),
)
expected_labels = [7, 6, 10, 9]
expected_logits = tf.convert_to_tensor([6.1186, 11.8961, 10.2931, 6.0898])
self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
def test_inference_intent_classification(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
input_data = self._load_superb("ic", 4)
inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits_action, predicted_ids_action = (
tf.math.reduce_max(outputs.logits[:, :6], axis=-1),
tf.argmax(outputs.logits[:, :6], axis=-1),
)
predicted_logits_object, predicted_ids_object = (
tf.math.reduce_max(outputs.logits[:, 6:20], axis=-1),
tf.argmax(outputs.logits[:, 6:20], axis=-1),
)
predicted_logits_location, predicted_ids_location = (
tf.math.reduce_max(outputs.logits[:, 20:24], axis=-1),
tf.argmax(outputs.logits[:, 20:24], axis=-1),
)
expected_labels_action = [0, 0, 2, 3]
expected_logits_action = tf.convert_to_tensor([0.4568, 11.0848, 1.6621, 9.3841])
expected_labels_object = [3, 10, 3, 4]
expected_logits_object = tf.convert_to_tensor([1.5322, 10.7094, 5.2469, 22.1318])
expected_labels_location = [0, 0, 0, 1]
expected_logits_location = tf.convert_to_tensor([1.5335, 6.5096, 10.5704, 11.0569])
self.assertListEqual(predicted_ids_action.numpy().tolist(), expected_labels_action)
self.assertListEqual(predicted_ids_object.numpy().tolist(), expected_labels_object)
self.assertListEqual(predicted_ids_location.numpy().tolist(), expected_labels_location)
self.assertTrue(np.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
self.assertTrue(np.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
self.assertTrue(np.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))
def test_inference_speaker_identification(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
input_data = self._load_superb("si", 4)
output_logits = []
for example in input_data["speech"]:
input = processor(example, return_tensors="tf", padding=True)
output = model(input.input_values, attention_mask=None)
output_logits.append(output.logits[0])
output_logits = tf.stack(output_logits)
predicted_logits, predicted_ids = tf.math.reduce_max(output_logits, axis=-1), tf.argmax(output_logits, axis=-1)
expected_labels = [251, 1, 1, 3]
expected_logits = tf.convert_to_tensor([37.5627, 71.6362, 64.2419, 31.7778])
self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
def test_inference_emotion_recognition(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
input_data = self._load_superb("er", 4)
inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits, predicted_ids = (
tf.math.reduce_max(outputs.logits, axis=-1),
tf.argmax(outputs.logits, axis=-1),
)
expected_labels = [1, 1, 2, 2]
# s3prl logits for the same batch
expected_logits = tf.convert_to_tensor([2.1722, 3.0779, 8.0287, 6.6797])
self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))