332 lines
12 KiB
Python
332 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch ViTMAE model. """
|
|
|
|
|
|
import math
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import ViTMAEConfig
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import ViTMAEForPreTraining, ViTMAEModel
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ViTImageProcessor
|
|
|
|
|
|
class ViTMAEModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
scope=None,
|
|
mask_ratio=0.5,
|
|
attn_implementation="eager",
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.mask_ratio = mask_ratio
|
|
self.scope = scope
|
|
self.attn_implementation = attn_implementation
|
|
|
|
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
|
|
# (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1)))
|
|
self.mask_ratio = mask_ratio
|
|
self.num_masks = int(mask_ratio * self.seq_length)
|
|
self.mask_length = num_patches
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return ViTMAEConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
mask_ratio=self.mask_ratio,
|
|
decoder_hidden_size=self.hidden_size,
|
|
decoder_intermediate_size=self.intermediate_size,
|
|
decoder_num_attention_heads=self.num_attention_heads,
|
|
decoder_num_hidden_layers=self.num_hidden_layers,
|
|
attn_implementation=self.attn_implementation,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = ViTMAEModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_pretraining(self, config, pixel_values, labels):
|
|
model = ViTMAEForPreTraining(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
num_patches = (self.image_size // self.patch_size) ** 2
|
|
expected_num_channels = self.patch_size**2 * self.num_channels
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
|
|
|
|
# test greyscale images
|
|
config.num_channels = 1
|
|
model = ViTMAEForPreTraining(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
|
|
result = model(pixel_values)
|
|
expected_num_channels = self.patch_size**2
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ViTMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-feature-extraction": ViTMAEModel} if is_torch_available() else {}
|
|
|
|
test_pruning = False
|
|
test_torchscript = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = ViTMAEModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="ViTMAE does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_pretraining(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
|
|
|
|
# overwrite from common since ViTMAEForPretraining has random masking, we need to fix the noise
|
|
# to generate masks during test
|
|
def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
|
|
# make masks reproducible
|
|
np.random.seed(2)
|
|
|
|
num_patches = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2)
|
|
noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
|
|
pt_noise = torch.from_numpy(noise)
|
|
|
|
# Add `noise` argument.
|
|
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
|
|
pt_inputs_dict["noise"] = pt_noise
|
|
|
|
super().check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
|
|
|
|
def test_save_load(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
# make random mask reproducible
|
|
torch.manual_seed(2)
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
model.to(torch_device)
|
|
# make random mask reproducible
|
|
torch.manual_seed(2)
|
|
with torch.no_grad():
|
|
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Make sure we don't have nans
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
@unittest.skip(
|
|
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
|
|
to get deterministic results."""
|
|
)
|
|
def test_determinism(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
|
|
to get deterministic results."""
|
|
)
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
|
|
to get deterministic results."""
|
|
)
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""")
|
|
def test_model_outputs_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass")
|
|
def test_batching_equivalence(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/vit-base-patch16-224"
|
|
model = ViTMAEModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ViTMAEModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None
|
|
|
|
@slow
|
|
def test_inference_for_pretraining(self):
|
|
# make random mask reproducible across the PT and TF model
|
|
np.random.seed(2)
|
|
|
|
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device)
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# prepare a noise vector that will be also used for testing the TF model
|
|
# (this way we can ensure that the PT and TF models operate on the same inputs)
|
|
vit_mae_config = ViTMAEConfig()
|
|
num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
|
|
noise = np.random.uniform(size=(1, num_patches))
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, noise=torch.from_numpy(noise).to(device=torch_device))
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 196, 768))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(torch_device), atol=1e-4))
|