transformers/tests/models/tvlt/test_modeling_tvlt.py

626 lines
24 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TVLT model. """
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import (
TvltConfig,
is_datasets_available,
is_speech_available,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
import torch.nn as nn
from transformers import TvltForAudioVisualClassification, TvltForPreTraining, TvltModel
if is_datasets_available():
from datasets import load_dataset
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
class TvltModelTester:
def __init__(
self,
parent,
batch_size=2,
image_size=32,
spectrogram_length=32,
frequency_length=16,
image_patch_size=[2, 2],
audio_patch_size=[2, 2],
num_image_channels=3,
num_audio_channels=1,
num_frames=2,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=128,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
qkv_bias=True,
use_mean_pooling=True,
decoder_num_attention_heads=4,
decoder_hidden_size=32,
decoder_num_hidden_layers=2,
decoder_intermediate_size=128,
image_mask_ratio=0.75,
audio_mask_ratio=0.15,
audio_mask_type="frame-level",
task_matching=True,
task_mae=True,
num_labels=1,
is_training=True,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.spectrogram_length = spectrogram_length
self.frequency_length = frequency_length
self.image_patch_size = image_patch_size
self.audio_patch_size = audio_patch_size
self.num_image_channels = num_image_channels
self.num_audio_channels = num_audio_channels
self.num_frames = num_frames
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.use_mean_pooling = use_mean_pooling
self.decoder_num_attention_heads = decoder_num_attention_heads
self.decoder_hidden_size = decoder_hidden_size
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.decoder_intermediate_size = decoder_intermediate_size
self.image_mask_ratio = image_mask_ratio
self.audio_mask_ratio = audio_mask_ratio
self.task_matching = task_matching
self.task_mae = task_mae
self.num_labels = num_labels
self.expected_pixel_seq_len = (self.image_size // self.image_patch_size[0]) ** 2 * self.num_frames
self.expected_audio_seq_len = (self.spectrogram_length // self.audio_patch_size[0]) * (
self.frequency_length // self.audio_patch_size[1]
)
# we set the expected sequence length (which is used in several tests)
# this is equal to the seq length of number of image/video patches + number of audio patches
self.expected_seq_len = self.expected_pixel_seq_len + self.expected_audio_seq_len + 1
self.image_mae_output_dim = image_patch_size[0] ** 2 * num_image_channels
self.audio_mae_output_dim = audio_patch_size[0] * audio_patch_size[1] * num_audio_channels
self.is_training = is_training
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size]
)
audio_values = floats_tensor(
[self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length]
)
pixel_mask = floats_tensor([self.batch_size, self.expected_pixel_seq_len])
audio_mask = floats_tensor([self.batch_size, self.expected_audio_seq_len])
config = self.get_config()
return (config, pixel_values, audio_values, pixel_mask, audio_mask)
def prepare_config_and_inputs_for_pretraining(self):
pixel_values = floats_tensor(
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size]
)
audio_values = floats_tensor(
[self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length]
)
pixel_mask = floats_tensor([self.batch_size, self.expected_pixel_seq_len])
audio_mask = floats_tensor([self.batch_size, self.expected_audio_seq_len])
pixel_values_mixed = floats_tensor(
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size]
)
pixel_mask_mixed = floats_tensor([self.batch_size, self.expected_pixel_seq_len])
labels = floats_tensor([self.batch_size])
config = self.get_config()
return (
config,
pixel_values,
audio_values,
pixel_mask,
audio_mask,
pixel_values_mixed,
pixel_mask_mixed,
labels,
)
def get_config(self):
return TvltConfig(
image_size=self.image_size,
spectrogram_length=self.spectrogram_length,
frequency_length=self.frequency_length,
image_patch_size=self.image_patch_size,
audio_patch_size=self.audio_patch_size,
num_image_channels=self.num_image_channels,
num_audio_channels=self.num_audio_channels,
num_frames=self.num_frames,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
qkv_bias=self.qkv_bias,
use_mean_pooling=self.use_mean_pooling,
decoder_num_attention_heads=self.decoder_num_attention_heads,
decoder_hidden_size=self.decoder_hidden_size,
decoder_num_hidden_layers=self.decoder_num_hidden_layers,
decoder_intermediate_size=self.decoder_intermediate_size,
image_mask_ratio=self.image_mask_ratio,
audio_mask_ratio=self.audio_mask_ratio,
task_matching=self.task_matching,
task_mae=self.task_mae,
num_labels=self.num_labels,
)
def create_and_check_model(self, config, pixel_values, audio_values, pixel_mask, audio_mask):
model = TvltModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask)
result = model(pixel_values, audio_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)
)
def create_and_check_for_audiovisual_classification(
self, config, pixel_values, audio_values, pixel_mask, audio_mask
):
model = TvltForAudioVisualClassification(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask)
result = model(pixel_values, audio_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_pretraining(
self,
config,
pixel_values,
audio_values,
pixel_mask,
audio_mask,
pixel_values_mixed,
pixel_mask_mixed,
labels,
):
model = TvltForPreTraining(config=config)
model.to(torch_device)
model.train()
result = model(
pixel_values,
audio_values,
pixel_mask,
audio_mask,
pixel_values_mixed=pixel_values_mixed,
pixel_mask_mixed=pixel_mask_mixed,
labels=labels,
)
self.parent.assertEqual(
result.pixel_logits.shape, (self.batch_size, self.expected_pixel_seq_len, self.image_mae_output_dim)
)
self.parent.assertEqual(
result.audio_logits.shape, (self.batch_size, self.expected_audio_seq_len, self.audio_mae_output_dim)
)
self.parent.assertEqual(result.matching_logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_pretraining_inference(
self,
config,
pixel_values,
audio_values,
pixel_mask,
audio_mask,
pixel_values_mixed,
pixel_mask_mixed,
labels,
):
model = TvltForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
pixel_values,
audio_values,
pixel_mask,
audio_mask,
pixel_values_mixed=pixel_values_mixed,
pixel_mask_mixed=pixel_mask_mixed,
labels=labels,
)
if result.pixel_logits is not None:
self.parent.assertEqual(
result.pixel_logits.shape, (self.batch_size, self.expected_pixel_seq_len, self.image_mae_output_dim)
)
if result.audio_logits is not None:
self.parent.assertEqual(
result.audio_logits.shape, (self.batch_size, self.expected_audio_seq_len, self.audio_mae_output_dim)
)
self.parent.assertEqual(result.matching_logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, pixel_values, audio_values, pixel_mask, audio_mask) = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"audio_values": audio_values,
"pixel_mask": pixel_mask,
"audio_mask": audio_mask,
}
return config, inputs_dict
def prepare_pixel_values(self):
return floats_tensor(
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size]
)
def prepare_audio_values(self):
return floats_tensor(
[self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length]
)
@require_torch
class TvltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(TvltModel, TvltForPreTraining, TvltForAudioVisualClassification) if is_torch_available() else ()
)
pipeline_model_mapping = {"feature-extraction": TvltModel} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_headmasking = False
test_torchscript = False
test_resize_embeddings = False
main_input_name = "pixel_values"
# TvltForAudioVisualClassification and TvltForPreTraining require special treatment
def _prepare_for_class(self, inputs_dict, model_class, return_labels=True):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class.__name__ == "TvltForAudioVisualClassification":
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size,), dtype=torch.long, device=torch_device
)
elif model_class.__name__ == "TvltForPreTraining":
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size,), dtype=torch.float, device=torch_device
)
inputs_dict["pixel_values_mixed"] = torch.zeros(
(
self.model_tester.batch_size,
self.model_tester.num_frames,
self.model_tester.num_image_channels,
self.model_tester.image_size,
self.model_tester.image_size,
),
dtype=torch.float,
device=torch_device,
)
inputs_dict["pixel_mask_mixed"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.expected_pixel_seq_len),
dtype=torch.float,
device=torch_device,
)
return inputs_dict
def setUp(self):
self.model_tester = TvltModelTester(self)
self.config_tester = ConfigTester(self, config_class=TvltConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="TVLT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
input_embeddings = model.get_input_embeddings()
self.assertIsInstance(input_embeddings, (tuple))
for embedding in input_embeddings:
self.assertIsInstance(embedding, (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "audio_values"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_audiovisual_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_audiovisual_classification(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_pretraining()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
self.model_tester.create_and_check_for_pretraining_inference(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "ZinengTang/tvlt-base"
model = TvltModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes[1:]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class)
for k, v in inputs.items():
print(k, v.shape)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes[1:]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class)
loss = model(**inputs).loss
loss.backward()
def test_attention_outputs(self):
if not self.has_attentions:
pass
else:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes[2:]:
seq_len = self.model_tester.expected_seq_len
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[2:]:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video(num_frames=8):
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
)
video = np.load(file)[:num_frames]
return list(video)
def prepare_audio(num_samples=1):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
@require_torch
@require_vision
class TvltModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processors(self):
# logits were tested with a different mean and std, so we use the same here
return (
TvltImageProcessor() if is_vision_available() else None,
TvltFeatureExtractor(),
)
def test_inference_for_base_model(self):
model = TvltModel.from_pretrained("ZinengTang/tvlt-base").to(torch_device)
image_processor, audio_feature_extractor = self.default_processors
video = prepare_video()
audio = prepare_audio()
video_inputs = image_processor(video, return_tensors="pt").to(torch_device)
audio_inputs = audio_feature_extractor(audio, return_tensors="pt").to(torch_device)
inputs = {}
inputs.update(video_inputs)
inputs.update(audio_inputs)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_last_hidden_state_slice = torch.tensor([[-0.0186, -0.0691], [0.0242, -0.0398]], device=torch_device)
self.assertTrue(
torch.allclose(outputs.last_hidden_state[:, :2, :2], expected_last_hidden_state_slice, atol=1e-4)
)
def test_inference_for_pretraining(self):
model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base").to(torch_device)
image_processor, audio_feature_extractor = self.default_processors
video = prepare_video()
video_mixed = prepare_video()
audio = prepare_audio()
video_inputs = image_processor(video, return_tensors="pt", mask_pixel=True).to(torch_device)
video_mixed_inputs = image_processor(video_mixed, is_mixed=True, return_tensors="pt").to(torch_device)
audio_inputs = audio_feature_extractor(audio, return_tensors="pt", mask_audio=True).to(torch_device)
labels = torch.tensor([[0.0]], device=torch_device)
inputs = {}
inputs.update(video_inputs)
inputs.update(video_mixed_inputs)
inputs.update(audio_inputs)
inputs.update({"labels": labels})
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_pixel_logits_shape = torch.Size([1, 1568, 768])
expected_audio_logits_shape = torch.Size([1, 96, 256])
expected_matching_logits_shape = torch.Size([1, 1])
if outputs.pixel_logits is not None:
self.assertEqual(outputs.pixel_logits.shape, expected_pixel_logits_shape)
if outputs.audio_logits is not None:
self.assertEqual(outputs.audio_logits.shape, expected_audio_logits_shape)
self.assertTrue(outputs.matching_logits.shape, expected_matching_logits_shape)