434 lines
17 KiB
Python
434 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch SegFormer model. """
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import SegformerConfig, is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
SegformerForImageClassification,
|
|
SegformerForSemanticSegmentation,
|
|
SegformerModel,
|
|
)
|
|
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import SegformerImageProcessor
|
|
|
|
|
|
class SegformerConfigTester(ConfigTester):
|
|
def create_and_test_config_common_properties(self):
|
|
config = self.config_class(**self.inputs_dict)
|
|
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
|
|
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
|
|
self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))
|
|
|
|
|
|
class SegformerModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=64,
|
|
num_channels=3,
|
|
num_encoder_blocks=4,
|
|
depths=[1, 1, 1, 1],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
hidden_sizes=[8, 8, 16, 16],
|
|
downsampling_rates=[1, 4, 8, 16],
|
|
num_attention_heads=[1, 1, 2, 2],
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.num_channels = num_channels
|
|
self.num_encoder_blocks = num_encoder_blocks
|
|
self.sr_ratios = sr_ratios
|
|
self.depths = depths
|
|
self.hidden_sizes = hidden_sizes
|
|
self.downsampling_rates = downsampling_rates
|
|
self.num_attention_heads = num_attention_heads
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return SegformerConfig(
|
|
image_size=self.image_size,
|
|
num_channels=self.num_channels,
|
|
num_encoder_blocks=self.num_encoder_blocks,
|
|
depths=self.depths,
|
|
hidden_sizes=self.hidden_sizes,
|
|
num_attention_heads=self.num_attention_heads,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = SegformerModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
|
|
)
|
|
|
|
def create_and_check_for_image_segmentation(self, config, pixel_values, labels):
|
|
config.num_labels = self.num_labels
|
|
model = SegformerForSemanticSegmentation(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)
|
|
)
|
|
result = model(pixel_values, labels=labels)
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)
|
|
)
|
|
self.parent.assertGreater(result.loss, 0.0)
|
|
|
|
def create_and_check_for_binary_image_segmentation(self, config, pixel_values, labels):
|
|
config.num_labels = 1
|
|
model = SegformerForSemanticSegmentation(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
labels = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size)).to(torch_device)
|
|
result = model(pixel_values, labels=labels)
|
|
self.parent.assertGreater(result.loss, 0.0)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SegformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
SegformerModel,
|
|
SegformerForSemanticSegmentation,
|
|
SegformerForImageClassification,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"image-feature-extraction": SegformerModel,
|
|
"image-classification": SegformerForImageClassification,
|
|
"image-segmentation": SegformerForSemanticSegmentation,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
fx_compatible = True
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = SegformerModelTester(self)
|
|
self.config_tester = SegformerConfigTester(self, config_class=SegformerConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_binary_image_segmentation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_binary_image_segmentation(*config_and_inputs)
|
|
|
|
def test_for_image_segmentation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)
|
|
|
|
@unittest.skip("SegFormer does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
|
|
expected_num_attentions = sum(self.model_tester.depths)
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
# verify the first attentions (first block, first layer)
|
|
expected_seq_len = (self.model_tester.image_size // 4) ** 2
|
|
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
|
|
)
|
|
|
|
# verify the last attentions (last block, last layer)
|
|
expected_seq_len = (self.model_tester.image_size // 32) ** 2
|
|
expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
|
|
self.assertListEqual(
|
|
list(attentions[-1].shape[-3:]),
|
|
[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
self.assertEqual(out_len + 1, len(outputs))
|
|
|
|
self_attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), expected_num_attentions)
|
|
# verify the first attentions (first block, first layer)
|
|
expected_seq_len = (self.model_tester.image_size // 4) ** 2
|
|
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
|
|
)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
|
|
expected_num_layers = self.model_tester.num_encoder_blocks
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
# verify the first hidden states (first block)
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-3:]),
|
|
[
|
|
self.model_tester.hidden_sizes[0],
|
|
self.model_tester.image_size // 4,
|
|
self.model_tester.image_size // 4,
|
|
],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ in MODEL_MAPPING_NAMES.values():
|
|
continue
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "nvidia/segformer-b0-finetuned-ade-512-512"
|
|
model = SegformerModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
class SegformerModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_image_segmentation_ade(self):
|
|
# only resize + normalize
|
|
image_processor = SegformerImageProcessor(
|
|
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
|
|
)
|
|
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to(
|
|
torch_device
|
|
)
|
|
|
|
image = prepare_img()
|
|
encoded_inputs = image_processor(images=image, return_tensors="pt")
|
|
pixel_values = encoded_inputs.pixel_values.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values)
|
|
|
|
expected_shape = torch.Size((1, model.config.num_labels, 128, 128))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
|
|
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
|
|
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
|
|
]
|
|
).to(torch_device)
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_image_segmentation_city(self):
|
|
# only resize + normalize
|
|
image_processor = SegformerImageProcessor(
|
|
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
|
|
)
|
|
model = SegformerForSemanticSegmentation.from_pretrained(
|
|
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
|
|
).to(torch_device)
|
|
|
|
image = prepare_img()
|
|
encoded_inputs = image_processor(images=image, return_tensors="pt")
|
|
pixel_values = encoded_inputs.pixel_values.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values)
|
|
|
|
expected_shape = torch.Size((1, model.config.num_labels, 128, 128))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
|
|
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
|
|
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
|
|
]
|
|
).to(torch_device)
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1))
|
|
|
|
@slow
|
|
def test_post_processing_semantic_segmentation(self):
|
|
# only resize + normalize
|
|
image_processor = SegformerImageProcessor(
|
|
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
|
|
)
|
|
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to(
|
|
torch_device
|
|
)
|
|
|
|
image = prepare_img()
|
|
encoded_inputs = image_processor(images=image, return_tensors="pt")
|
|
pixel_values = encoded_inputs.pixel_values.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values)
|
|
|
|
outputs.logits = outputs.logits.detach().cpu()
|
|
|
|
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
|
|
expected_shape = torch.Size((500, 300))
|
|
self.assertEqual(segmentation[0].shape, expected_shape)
|
|
|
|
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
|
|
expected_shape = torch.Size((128, 128))
|
|
self.assertEqual(segmentation[0].shape, expected_shape)
|