555 lines
20 KiB
Python
555 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch REALM model. """
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import RealmConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
RealmEmbedder,
|
|
RealmForOpenQA,
|
|
RealmKnowledgeAugEncoder,
|
|
RealmReader,
|
|
RealmRetriever,
|
|
RealmScorer,
|
|
RealmTokenizer,
|
|
)
|
|
|
|
|
|
class RealmModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
retriever_proj_size=128,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-12,
|
|
span_hidden_size=50,
|
|
max_span_width=10,
|
|
reader_layer_norm_eps=1e-3,
|
|
reader_beam_size=4,
|
|
reader_seq_len=288 + 32,
|
|
num_block_records=13353718,
|
|
searcher_beam_size=8,
|
|
searcher_seq_len=64,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
num_candidates=10,
|
|
scope=None,
|
|
):
|
|
# General config
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.retriever_proj_size = retriever_proj_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.layer_norm_eps = layer_norm_eps
|
|
|
|
# Reader config
|
|
self.span_hidden_size = span_hidden_size
|
|
self.max_span_width = max_span_width
|
|
self.reader_layer_norm_eps = reader_layer_norm_eps
|
|
self.reader_beam_size = reader_beam_size
|
|
self.reader_seq_len = reader_seq_len
|
|
|
|
# Searcher config
|
|
self.num_block_records = num_block_records
|
|
self.searcher_beam_size = searcher_beam_size
|
|
self.searcher_seq_len = searcher_seq_len
|
|
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.num_candidates = num_candidates
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
candiate_input_ids = ids_tensor([self.batch_size, self.num_candidates, self.seq_length], self.vocab_size)
|
|
reader_input_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.vocab_size)
|
|
|
|
input_mask = None
|
|
candiate_input_mask = None
|
|
reader_input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
candiate_input_mask = random_attention_mask([self.batch_size, self.num_candidates, self.seq_length])
|
|
reader_input_mask = random_attention_mask([self.reader_beam_size, self.reader_seq_len])
|
|
|
|
token_type_ids = None
|
|
candidate_token_type_ids = None
|
|
reader_token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
candidate_token_type_ids = ids_tensor(
|
|
[self.batch_size, self.num_candidates, self.seq_length], self.type_vocab_size
|
|
)
|
|
reader_token_type_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
# inputs with additional num_candidates axis.
|
|
scorer_encoder_inputs = (candiate_input_ids, candiate_input_mask, candidate_token_type_ids)
|
|
# reader inputs
|
|
reader_inputs = (reader_input_ids, reader_input_mask, reader_token_type_ids)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
scorer_encoder_inputs,
|
|
reader_inputs,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def get_config(self):
|
|
return RealmConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
retriever_proj_size=self.retriever_proj_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_candidates=self.num_candidates,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_embedder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
scorer_encoder_inputs,
|
|
reader_inputs,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = RealmEmbedder(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
self.parent.assertEqual(result.projected_score.shape, (self.batch_size, self.retriever_proj_size))
|
|
|
|
def create_and_check_encoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
scorer_encoder_inputs,
|
|
reader_inputs,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = RealmKnowledgeAugEncoder(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
relevance_score = floats_tensor([self.batch_size, self.num_candidates])
|
|
result = model(
|
|
scorer_encoder_inputs[0],
|
|
attention_mask=scorer_encoder_inputs[1],
|
|
token_type_ids=scorer_encoder_inputs[2],
|
|
relevance_score=relevance_score,
|
|
labels=token_labels,
|
|
)
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size * self.num_candidates, self.seq_length, self.vocab_size)
|
|
)
|
|
|
|
def create_and_check_reader(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
scorer_encoder_inputs,
|
|
reader_inputs,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = RealmReader(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
relevance_score = floats_tensor([self.reader_beam_size])
|
|
result = model(
|
|
reader_inputs[0],
|
|
attention_mask=reader_inputs[1],
|
|
token_type_ids=reader_inputs[2],
|
|
relevance_score=relevance_score,
|
|
)
|
|
self.parent.assertEqual(result.block_idx.shape, ())
|
|
self.parent.assertEqual(result.candidate.shape, ())
|
|
self.parent.assertEqual(result.start_pos.shape, ())
|
|
self.parent.assertEqual(result.end_pos.shape, ())
|
|
|
|
def create_and_check_scorer(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
scorer_encoder_inputs,
|
|
reader_inputs,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = RealmScorer(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
candidate_input_ids=scorer_encoder_inputs[0],
|
|
candidate_attention_mask=scorer_encoder_inputs[1],
|
|
candidate_token_type_ids=scorer_encoder_inputs[2],
|
|
)
|
|
self.parent.assertEqual(result.relevance_score.shape, (self.batch_size, self.num_candidates))
|
|
self.parent.assertEqual(result.query_score.shape, (self.batch_size, self.retriever_proj_size))
|
|
self.parent.assertEqual(
|
|
result.candidate_score.shape, (self.batch_size, self.num_candidates, self.retriever_proj_size)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
scorer_encoder_inputs,
|
|
reader_inputs,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class RealmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
RealmEmbedder,
|
|
RealmKnowledgeAugEncoder,
|
|
# RealmScorer is excluded from common tests as it is a container model
|
|
# consisting of two RealmEmbedders & a simple inner product calculation.
|
|
# RealmScorer
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = ()
|
|
pipeline_model_mapping = {} if is_torch_available() else {}
|
|
|
|
# disable these tests because there is no base_model in Realm
|
|
test_save_load_fast_init_from_base = False
|
|
test_save_load_fast_init_to_base = False
|
|
|
|
def setUp(self):
|
|
self.test_pruning = False
|
|
self.model_tester = RealmModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=RealmConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_embedder(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_embedder(*config_and_inputs)
|
|
|
|
def test_encoder(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_encoder(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_embedder(*config_and_inputs)
|
|
self.model_tester.create_and_check_encoder(*config_and_inputs)
|
|
|
|
def test_scorer(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_scorer(*config_and_inputs)
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
config, *inputs = self.model_tester.prepare_config_and_inputs()
|
|
input_ids, token_type_ids, input_mask, scorer_encoder_inputs = inputs[0:4]
|
|
config.return_dict = True
|
|
|
|
tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
|
|
|
|
# RealmKnowledgeAugEncoder training
|
|
model = RealmKnowledgeAugEncoder(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
inputs_dict = {
|
|
"input_ids": scorer_encoder_inputs[0].to(torch_device),
|
|
"attention_mask": scorer_encoder_inputs[1].to(torch_device),
|
|
"token_type_ids": scorer_encoder_inputs[2].to(torch_device),
|
|
"relevance_score": floats_tensor([self.model_tester.batch_size, self.model_tester.num_candidates]),
|
|
}
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
inputs = inputs_dict
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
# RealmForOpenQA training
|
|
openqa_config = copy.deepcopy(config)
|
|
openqa_config.vocab_size = 30522 # the retrieved texts will inevitably have more than 99 vocabs.
|
|
openqa_config.num_block_records = 5
|
|
openqa_config.searcher_beam_size = 2
|
|
|
|
block_records = np.array(
|
|
[
|
|
b"This is the first record.",
|
|
b"This is the second record.",
|
|
b"This is the third record.",
|
|
b"This is the fourth record.",
|
|
b"This is the fifth record.",
|
|
],
|
|
dtype=object,
|
|
)
|
|
retriever = RealmRetriever(block_records, tokenizer)
|
|
model = RealmForOpenQA(openqa_config, retriever)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids[:1].to(torch_device),
|
|
"attention_mask": input_mask[:1].to(torch_device),
|
|
"token_type_ids": token_type_ids[:1].to(torch_device),
|
|
"answer_ids": input_ids[:1].tolist(),
|
|
}
|
|
inputs = self._prepare_for_class(inputs_dict, RealmForOpenQA)
|
|
loss = model(**inputs).reader_output.loss
|
|
loss.backward()
|
|
|
|
# Test model.block_embedding_to
|
|
device = torch.device("cpu")
|
|
model.block_embedding_to(device)
|
|
loss = model(**inputs).reader_output.loss
|
|
loss.backward()
|
|
self.assertEqual(model.block_emb.device.type, device.type)
|
|
|
|
@slow
|
|
def test_embedder_from_pretrained(self):
|
|
model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
|
|
self.assertIsNotNone(model)
|
|
|
|
@slow
|
|
def test_encoder_from_pretrained(self):
|
|
model = RealmKnowledgeAugEncoder.from_pretrained("google/realm-cc-news-pretrained-encoder")
|
|
self.assertIsNotNone(model)
|
|
|
|
@slow
|
|
def test_open_qa_from_pretrained(self):
|
|
model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa")
|
|
self.assertIsNotNone(model)
|
|
|
|
@slow
|
|
def test_reader_from_pretrained(self):
|
|
model = RealmReader.from_pretrained("google/realm-orqa-nq-reader")
|
|
self.assertIsNotNone(model)
|
|
|
|
@slow
|
|
def test_scorer_from_pretrained(self):
|
|
model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer")
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
class RealmModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_embedder(self):
|
|
retriever_projected_size = 128
|
|
|
|
model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
|
|
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
|
|
output = model(input_ids)[0]
|
|
|
|
expected_shape = torch.Size((1, retriever_projected_size))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([[-0.0714, -0.0837, -0.1314]])
|
|
self.assertTrue(torch.allclose(output[:, :3], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_encoder(self):
|
|
num_candidates = 2
|
|
vocab_size = 30522
|
|
|
|
model = RealmKnowledgeAugEncoder.from_pretrained(
|
|
"google/realm-cc-news-pretrained-encoder", num_candidates=num_candidates
|
|
)
|
|
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
|
|
relevance_score = torch.tensor([[0.3, 0.7]], dtype=torch.float32)
|
|
output = model(input_ids, relevance_score=relevance_score)[0]
|
|
|
|
expected_shape = torch.Size((2, 6, vocab_size))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([[[-11.0888, -11.2544], [-10.2170, -10.3874]]])
|
|
|
|
self.assertTrue(torch.allclose(output[1, :2, :2], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_open_qa(self):
|
|
from transformers.models.realm.retrieval_realm import RealmRetriever
|
|
|
|
tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
|
|
retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa")
|
|
|
|
model = RealmForOpenQA.from_pretrained(
|
|
"google/realm-orqa-nq-openqa",
|
|
retriever=retriever,
|
|
)
|
|
|
|
question = "Who is the pioneer in modern computer science?"
|
|
|
|
question = tokenizer(
|
|
[question],
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=model.config.searcher_seq_len,
|
|
return_tensors="pt",
|
|
).to(model.device)
|
|
|
|
predicted_answer_ids = model(**question).predicted_answer_ids
|
|
|
|
predicted_answer = tokenizer.decode(predicted_answer_ids)
|
|
self.assertEqual(predicted_answer, "alan mathison turing")
|
|
|
|
@slow
|
|
def test_inference_reader(self):
|
|
config = RealmConfig(reader_beam_size=2, max_span_width=3)
|
|
model = RealmReader.from_pretrained("google/realm-orqa-nq-reader", config=config)
|
|
|
|
concat_input_ids = torch.arange(10).view((2, 5))
|
|
concat_token_type_ids = torch.tensor([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], dtype=torch.int64)
|
|
concat_block_mask = torch.tensor([[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]], dtype=torch.int64)
|
|
relevance_score = torch.tensor([0.3, 0.7], dtype=torch.float32)
|
|
|
|
output = model(
|
|
concat_input_ids,
|
|
token_type_ids=concat_token_type_ids,
|
|
relevance_score=relevance_score,
|
|
block_mask=concat_block_mask,
|
|
return_dict=True,
|
|
)
|
|
|
|
block_idx_expected_shape = torch.Size(())
|
|
start_pos_expected_shape = torch.Size((1,))
|
|
end_pos_expected_shape = torch.Size((1,))
|
|
self.assertEqual(output.block_idx.shape, block_idx_expected_shape)
|
|
self.assertEqual(output.start_pos.shape, start_pos_expected_shape)
|
|
self.assertEqual(output.end_pos.shape, end_pos_expected_shape)
|
|
|
|
expected_block_idx = torch.tensor(1)
|
|
expected_start_pos = torch.tensor(3)
|
|
expected_end_pos = torch.tensor(3)
|
|
|
|
self.assertTrue(torch.allclose(output.block_idx, expected_block_idx, atol=1e-4))
|
|
self.assertTrue(torch.allclose(output.start_pos, expected_start_pos, atol=1e-4))
|
|
self.assertTrue(torch.allclose(output.end_pos, expected_end_pos, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_scorer(self):
|
|
num_candidates = 2
|
|
|
|
model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=num_candidates)
|
|
|
|
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
|
|
candidate_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
|
|
output = model(input_ids, candidate_input_ids=candidate_input_ids)[0]
|
|
|
|
expected_shape = torch.Size((1, 2))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([[0.7410, 0.7170]])
|
|
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))
|