transformers/tests/models/pvt_v2/test_modeling_pvt_v2.py

443 lines
17 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PvtV2 model."""
import inspect
import tempfile
import unittest
from transformers import PvtV2Backbone, PvtV2Config, is_torch_available, is_vision_available
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_accelerator,
require_torch_fp16,
slow,
torch_device,
)
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoImageProcessor, PvtV2ForImageClassification, PvtV2Model
if is_vision_available():
from PIL import Image
class PvtV2ConfigTester(ConfigTester):
def run_common_tests(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))
class PvtV2ModelTester(ModelTesterMixin):
def __init__(
self,
parent,
batch_size=13,
image_size=None,
num_channels=3,
num_encoder_blocks=4,
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[16, 32, 64, 128],
downsampling_rates=[1, 4, 8, 16],
num_attention_heads=[1, 2, 4, 8],
out_indices=[0, 1, 2, 3],
is_training=True,
use_labels=True,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = 64 if image_size is None else image_size
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.sr_ratios = sr_ratios
self.depths = depths
self.hidden_sizes = hidden_sizes
self.downsampling_rates = downsampling_rates
self.num_attention_heads = num_attention_heads
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.out_indices = out_indices
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return PvtV2Config(
image_size=self.image_size,
num_channels=self.num_channels,
num_encoder_blocks=self.num_encoder_blocks,
depths=self.depths,
sr_ratios=self.sr_ratios,
hidden_sizes=self.hidden_sizes,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels):
model = PvtV2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertIsNotNone(result.last_hidden_state)
def create_and_check_backbone(self, config, pixel_values, labels):
model = PvtV2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
# verify backbone works with out_features=None
config.out_features = None
model = PvtV2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels), 1)
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = PvtV2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
# test greyscale images
config.num_channels = 1
model = PvtV2ForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
class PvtV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (PvtV2Model, PvtV2ForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": PvtV2Model, "image-classification": PvtV2ForImageClassification}
if is_torch_available()
else {}
)
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_torchscript = False
has_attentions = False
def setUp(self):
self.model_tester = PvtV2ModelTester(self)
self.config_tester = PvtV2ConfigTester(self, config_class=PvtV2Config)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip("Pvt-V2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip("Pvt-V2 does not have get_input_embeddings method and get_output_embeddings methods")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="This architecture does not work with using reentrant.")
def test_training_gradient_checkpointing(self):
# Scenario - 1 default behaviour
self.check_training_gradient_checkpointing()
@unittest.skip(reason="This architecture does not work with using reentrant.")
def test_training_gradient_checkpointing_use_reentrant(self):
# Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
# torch.utils.checkpoint.checkpoint
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, param in model.named_parameters():
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = len(self.model_tester.depths)
self.assertEqual(len(hidden_states), expected_num_layers)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]),
[
self.model_tester.hidden_sizes[self.model_tester.out_indices[0]],
self.model_tester.image_size // 2 ** (2 + self.model_tester.out_indices[0]),
self.model_tester.image_size // 2 ** (2 + self.model_tester.out_indices[0]),
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
if model_class.__name__ in MODEL_MAPPING_NAMES.values():
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@slow
def test_model_from_pretrained(self):
model_name = "OpenGVLab/pvt_v2_b0"
model = PvtV2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class PvtV2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification(self):
# only resize + normalize
image_processor = AutoImageProcessor.from_pretrained("OpenGVLab/pvt_v2_b0")
model = PvtV2ForImageClassification.from_pretrained("OpenGVLab/pvt_v2_b0").to(torch_device).eval()
image = prepare_img()
encoded_inputs = image_processor(images=image, return_tensors="pt")
pixel_values = encoded_inputs.pixel_values.to(torch_device)
with torch.no_grad():
outputs = model(pixel_values)
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.4192, -1.9158, -0.9702]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_model(self):
model = PvtV2Model.from_pretrained("OpenGVLab/pvt_v2_b0").to(torch_device).eval()
image_processor = AutoImageProcessor.from_pretrained("OpenGVLab/pvt_v2_b0")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(pixel_values)
# verify the logits
expected_shape = torch.Size((1, 50, 512))
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.3086, 1.0402, 1.1816], [-0.2880, 0.5781, 0.6124], [0.1480, 0.6129, -0.0590]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
@slow
@require_accelerate
@require_torch_accelerator
@require_torch_fp16
def test_inference_fp16(self):
r"""
A small test to make sure that inference work in half precision without any problem.
"""
model = PvtV2ForImageClassification.from_pretrained("OpenGVLab/pvt_v2_b0", torch_dtype=torch.float16)
model.to(torch_device)
image_processor = AutoImageProcessor.from_pretrained("OpenGVLab/pvt_v2_b0")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device, dtype=torch.float16)
# forward pass to make sure inference works in fp16
with torch.no_grad():
_ = model(pixel_values)
@require_torch
class PvtV2BackboneTest(BackboneTesterMixin, unittest.TestCase):
all_model_classes = (PvtV2Backbone,) if is_torch_available() else ()
has_attentions = False
config_class = PvtV2Config
def test_config(self):
config_class = self.config_class
# test default config
config = config_class()
self.assertIsNotNone(config)
num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers
expected_stage_names = [f"stage{idx}" for idx in range(1, num_stages + 1)]
self.assertEqual(config.stage_names, expected_stage_names)
self.assertTrue(set(config.out_features).issubset(set(config.stage_names)))
# Test out_features and out_indices are correctly set
# out_features and out_indices both None
config = config_class(out_features=None, out_indices=None)
self.assertEqual(config.out_features, [config.stage_names[-1]])
self.assertEqual(config.out_indices, [len(config.stage_names) - 1])
# out_features and out_indices both set
config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 1])
self.assertEqual(config.out_features, ["stage1", "stage2"])
self.assertEqual(config.out_indices, [0, 1])
# Only out_features set
config = config_class(out_features=["stage2", "stage4"])
self.assertEqual(config.out_features, ["stage2", "stage4"])
self.assertEqual(config.out_indices, [1, 3])
# Only out_indices set
config = config_class(out_indices=[0, 2])
self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]])
self.assertEqual(config.out_indices, [0, 2])
# Error raised when out_indices do not correspond to out_features
with self.assertRaises(ValueError):
config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2])
def test_config_save_pretrained(self):
config_class = self.config_class
config_first = config_class(out_indices=[0, 1, 2, 3])
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(tmpdirname)
config_second = self.config_class.from_pretrained(tmpdirname)
# Fix issue where type switches in the saving process
if isinstance(config_second.image_size, list):
config_second.image_size = tuple(config_second.image_size)
self.assertEqual(config_second.to_dict(), config_first.to_dict())
def setUp(self):
self.model_tester = PvtV2ModelTester(self)