transformers/tests/models/perceiver/test_modeling_perceiver.py

1026 lines
44 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Perceiver model. """
import copy
import inspect
import math
import tempfile
import unittest
import warnings
from typing import Dict, List, Tuple
import numpy as np
from datasets import load_dataset
from transformers import PerceiverConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverModel,
PerceiverTokenizer,
)
from transformers.models.auto.modeling_auto import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_MASKED_LM_MAPPING_NAMES,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
MODEL_MAPPING_NAMES,
)
if is_vision_available():
from PIL import Image
from transformers import PerceiverImageProcessor
class PerceiverModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
num_channels=3,
image_size=32,
train_size=[20, 20],
num_frames=5,
audio_samples_per_frame=200,
samples_per_patch=20,
nchunks=20,
num_latents=10,
d_latents=20,
d_model=64,
num_blocks=1,
num_self_attends_per_block=2,
num_self_attention_heads=1,
num_cross_attention_heads=1,
self_attention_widening_factor=4,
cross_attention_widening_factor=4,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_act="gelu",
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
max_position_embeddings=7,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.num_channels = num_channels
self.image_size = image_size
self.train_size = train_size
self.num_frames = num_frames
self.audio_samples_per_frame = audio_samples_per_frame
self.samples_per_patch = samples_per_patch
self.nchunks = nchunks
self.num_latents = num_latents
self.d_latents = d_latents
self.d_model = d_model
self.num_blocks = num_blocks
self.num_self_attends_per_block = num_self_attends_per_block
self.num_self_attention_heads = num_self_attention_heads
self.num_cross_attention_heads = num_cross_attention_heads
self.self_attention_widening_factor = self_attention_widening_factor
self.cross_attention_widening_factor = cross_attention_widening_factor
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_act = hidden_act
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
# set subsampling for multimodal model (take first chunk)
image_chunk_size = np.prod((self.num_frames, self.image_size, self.image_size)) // self.nchunks
audio_chunk_size = self.num_frames * self.audio_samples_per_frame // self.samples_per_patch // self.nchunks
self.subsampling = {
"image": torch.arange(0, image_chunk_size),
"audio": torch.arange(0, audio_chunk_size),
"label": None,
}
def prepare_config_and_inputs(self, model_class=None):
config = self.get_config()
input_mask = None
sequence_labels = None
token_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.num_labels)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
if model_class is None or model_class.__name__ == "PerceiverModel":
inputs = floats_tensor([self.batch_size, self.seq_length, config.d_model], scale=1.0)
return config, inputs, input_mask, sequence_labels, token_labels
elif model_class.__name__ in ["PerceiverForMaskedLM", "PerceiverForSequenceClassification"]:
inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
# input mask is only relevant for text inputs
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
elif model_class.__name__ == "PerceiverForImageClassificationLearned":
inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
elif model_class.__name__ == "PerceiverForImageClassificationFourier":
inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
elif model_class.__name__ == "PerceiverForImageClassificationConvProcessing":
inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
elif model_class.__name__ == "PerceiverForOpticalFlow":
inputs = floats_tensor([self.batch_size, 2, 27, self.train_size[0], self.train_size[1]])
elif model_class.__name__ == "PerceiverForMultimodalAutoencoding":
images = torch.randn(
(self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size),
device=torch_device,
)
audio = torch.randn(
(self.batch_size, self.num_frames * self.audio_samples_per_frame, 1), device=torch_device
)
inputs = {
"image": images,
"audio": audio,
"label": torch.zeros((self.batch_size, self.num_labels), device=torch_device),
}
else:
raise ValueError(f"Model class {model_class} not supported")
return config, inputs, input_mask, sequence_labels, token_labels
def get_config(self):
return PerceiverConfig(
num_latents=self.num_latents,
d_latents=self.d_latents,
d_model=self.d_model,
qk_channels=self.d_latents,
v_channels=self.d_latents,
num_blocks=self.num_blocks,
num_self_attends_per_block=self.num_self_attends_per_block,
num_self_attention_heads=self.num_self_attention_heads,
num_cross_attention_heads=self.num_cross_attention_heads,
self_attention_widening_factor=self.self_attention_widening_factor,
cross_attention_widening_factor=self.cross_attention_widening_factor,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
max_position_embeddings=self.max_position_embeddings,
image_size=self.image_size,
train_size=self.train_size,
num_frames=self.num_frames,
audio_samples_per_frame=self.audio_samples_per_frame,
samples_per_patch=self.samples_per_patch,
num_labels=self.num_labels,
output_num_channels=32,
_label_trainable_num_channels=16,
)
def get_pipeline_config(self):
config = self.get_config()
# Byte level vocab
config.vocab_size = 261
config.max_position_embeddings = 40
return config
def create_and_check_for_masked_lm(self, config, inputs, input_mask, sequence_labels, token_labels):
model = PerceiverForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(self, config, inputs, input_mask, sequence_labels, token_labels):
model = PerceiverForSequenceClassification(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_image_classification_learned(
self, config, inputs, input_mask, sequence_labels, token_labels
):
model = PerceiverForImageClassificationLearned(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_image_classification_fourier(
self, config, inputs, input_mask, sequence_labels, token_labels
):
model = PerceiverForImageClassificationFourier(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_image_classification_conv(
self, config, inputs, input_mask, sequence_labels, token_labels
):
model = PerceiverForImageClassificationConvProcessing(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs
inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
config_and_inputs = self.prepare_config_and_inputs(model_class)
config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs
inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class PerceiverModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
PerceiverModel,
PerceiverForMaskedLM,
PerceiverForImageClassificationLearned,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForOpticalFlow,
PerceiverForMultimodalAutoencoding,
PerceiverForSequenceClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": PerceiverModel,
"fill-mask": PerceiverForMaskedLM,
"image-classification": (
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
),
"text-classification": PerceiverForSequenceClassification,
"zero-shot": PerceiverForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_head_masking = False
test_torchscript = False
maxDiff = None
def setUp(self):
self.model_tester = PerceiverModelTester(self)
self.config_tester = ConfigTester(self, config_class=PerceiverConfig, hidden_size=37)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
inputs_dict["subsampled_output_points"] = self.model_tester.subsampling
if return_labels:
if model_class.__name__ in [
*MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(),
"PerceiverForImageClassificationLearned",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationConvProcessing",
*MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(),
]:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class.__name__ in [
*MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES.values(),
*MODEL_FOR_MASKED_LM_MAPPING_NAMES.values(),
]:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
# we don't test common_properties and arguments_init as these don't apply for Perceiver
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM)
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification)
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_image_classification_learned(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
model_class=PerceiverForImageClassificationLearned
)
self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs)
def test_for_image_classification_fourier(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
model_class=PerceiverForImageClassificationFourier
)
self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs)
def test_for_image_classification_conv(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
model_class=PerceiverForImageClassificationConvProcessing
)
self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs)
def test_model_common_attributes(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
# we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter
# and Perceiver doesn't support get_output_embeddings
self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter))
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
if model_class.__name__ in [
*MODEL_MAPPING_NAMES.values(),
"PerceiverForOpticalFlow",
"PerceiverForMultimodalAutoencoding",
]:
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_forward_signature(self):
for model_class in self.all_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["inputs"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_determinism(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
first = model(**inputs_dict)[0]
second = model(**inputs_dict)[0]
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
# model outputs a dictionary with logits per modality, let's verify each modality
for modality in first.keys():
out_1 = first[modality].cpu().numpy()
out_2 = second[modality].cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
else:
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_attention_outputs(self):
seq_len = getattr(self.model_tester, "num_latents", None)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
config.return_dict = True
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self_attentions = outputs.attentions
cross_attentions = outputs.cross_attentions
# check expected number of attentions depending on model class
expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block
if model.__class__.__name__ == "PerceiverModel":
# we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
expected_num_cross_attentions = 1
else:
# we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
expected_num_cross_attentions = 2
self.assertEqual(len(self_attentions), expected_num_self_attentions)
self.assertEqual(len(cross_attentions), expected_num_cross_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self_attentions = outputs.attentions
cross_attentions = outputs.cross_attentions
self.assertEqual(len(self_attentions), expected_num_self_attentions)
self.assertEqual(len(cross_attentions), expected_num_cross_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_self_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_self_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_self_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.num_latents
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.d_latents],
)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_model_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
def test_retain_grad_hidden_states_attentions(self):
# no need to test all models as different heads yield the same functionality
model_class = PerceiverForMaskedLM
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
config.output_hidden_states = True
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
# Encoder-only model
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_feed_forward_chunking(self):
for model_class in self.all_model_classes:
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
torch.manual_seed(0)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
torch.manual_seed(0)
config.chunk_size_feed_forward = 1
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
# model outputs a dictionary with logits for each modality
for modality in hidden_states_no_chunk.keys():
self.assertTrue(
torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3)
)
else:
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))
def test_save_load(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
for modality in outputs[0].keys():
out_2 = outputs[0][modality].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# Make sure we don't have nans
out_1 = after_outputs[0][modality].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
else:
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# Make sure we don't have nans
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_correct_missing_keys(self):
if not self.test_missing_keys:
return
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# most Perceiver models don't have a typical head like is the case with BERT
if model_class.__name__ in [
"PerceiverForOpticalFlow",
"PerceiverForMultimodalAutoencoding",
*MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(),
"PerceiverForImageClassificationLearned",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationConvProcessing",
*MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(),
]:
continue
model = model_class(config)
base_model_prefix = model.base_model_prefix
if hasattr(model, base_model_prefix):
with tempfile.TemporaryDirectory() as temp_dir_name:
model.base_model.save_pretrained(temp_dir_name)
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
self.assertGreater(len(loading_info["missing_keys"]), 0)
def test_problem_types(self):
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if model_class.__name__ not in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values():
continue
config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class)
inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
@require_torch_multi_gpu
@unittest.skip(
reason=(
"Perceiver does not work with data parallel (DP) because of a bug in PyTorch:"
" https://github.com/pytorch/pytorch/issues/36035"
)
)
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
def test_resize_embeddings_untied(self):
pass
@unittest.skip(reason="Perceiver doesn't support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Perceiver doesn't support the AutoModel API")
def test_load_with_mismatched_shapes(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "deepmind/language-perceiver"
model = PerceiverModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
# Helper functions for optical flow integration test
def prepare_optical_flow_images():
dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test")
image1 = Image.open(dataset[0]["file"]).convert("RGB")
image2 = Image.open(dataset[0]["file"]).convert("RGB")
return image1, image2
def normalize(img):
return img / 255.0 * 2 - 1
def extract_image_patches(x, kernel, stride=1, dilation=1):
# Do TF 'SAME' Padding
b, c, h, w = x.shape
h2 = math.ceil(h / stride)
w2 = math.ceil(w / stride)
pad_row = (h2 - 1) * stride + (kernel - 1) * dilation + 1 - h
pad_col = (w2 - 1) * stride + (kernel - 1) * dilation + 1 - w
x = torch.nn.functional.pad(x, (pad_row // 2, pad_row - pad_row // 2, pad_col // 2, pad_col - pad_col // 2))
# Extract patches
patches = x.unfold(2, kernel, stride).unfold(3, kernel, stride)
patches = patches.permute(0, 4, 5, 1, 2, 3).contiguous()
return patches.view(b, -1, patches.shape[-2], patches.shape[-1])
@require_torch
@require_vision
class PerceiverModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver")
model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
model.to(torch_device)
# prepare inputs
text = "This is an incomplete sentence where some words are missing."
encoding = tokenizer(text, padding="max_length", return_tensors="pt")
# mask " missing.".
encoding.input_ids[0, 52:61] = tokenizer.mask_token_id
inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, tokenizer.model_max_length, len(tokenizer)))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4))
expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52]
masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions)
@slow
def test_inference_image_classification(self):
image_processor = PerceiverImageProcessor()
model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_image_classification_fourier(self):
image_processor = PerceiverImageProcessor()
model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1295, -0.2832, 0.3226], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_image_classification_conv(self):
image_processor = PerceiverImageProcessor()
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1186, 0.0554, 0.0897], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_optical_flow(self):
model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
model.to(torch_device)
# prepare inputs
image1, image2 = prepare_optical_flow_images()
img1 = normalize(np.array(image1))
img2 = normalize(np.array(image1))
# stack images
img1 = torch.tensor(np.moveaxis(img1, -1, 0))
img2 = torch.tensor(np.moveaxis(img2, -1, 0))
images = torch.stack([img1, img2], dim=0)
# extract 3x3 patches
patch_size = model.config.train_size
inputs = images[..., : patch_size[0], : patch_size[1]].unsqueeze(0)
batch_size, _, C, H, W = inputs.shape
patches = extract_image_patches(inputs.view(batch_size * 2, C, H, W), kernel=3)
_, C, H, W = patches.shape
patches = patches.view(batch_size, -1, C, H, W).float()
# forward pass
with torch.no_grad():
outputs = model(inputs=patches.to(torch_device))
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, 368, 496, 2))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[0.0025, -0.0050], [0.0025, -0.0049], [0.0025, -0.0048]],
[[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0047]],
[[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0046]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))