735 lines
30 KiB
Python
735 lines
30 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch Jamba model. """
|
|
import math
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
from parameterized import parameterized
|
|
|
|
from transformers import AutoTokenizer, JambaConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
JambaForCausalLM,
|
|
JambaForSequenceClassification,
|
|
JambaModel,
|
|
)
|
|
from transformers.models.jamba.modeling_jamba import (
|
|
HybridMambaAttentionDynamicCache,
|
|
)
|
|
|
|
|
|
class JambaModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
attn_layer_offset=1,
|
|
attn_layer_period=8,
|
|
num_attention_heads=4,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.attn_layer_offset = attn_layer_offset
|
|
self.attn_layer_period = attn_layer_period
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return JambaConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
attn_layer_offset=self.attn_layer_offset,
|
|
attn_layer_period=self.attn_layer_period,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=True,
|
|
initializer_range=self.initializer_range,
|
|
use_mamba_kernels=False,
|
|
num_experts=2,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
config.is_decoder = True
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
|
model = JambaModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_causal_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = JambaForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids, labels=token_labels)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.is_decoder = True
|
|
config.add_cross_attention = True
|
|
model = JambaForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# first forward pass
|
|
# Attention: Jamba needs the cache to be initialized to return a cache!
|
|
past_key_values = HybridMambaAttentionDynamicCache(
|
|
config, input_ids.shape[0], model.dtype, device=model.device
|
|
)
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
cache_position=torch.arange(
|
|
input_ids.shape[1], input_ids.shape[1] + next_tokens.shape[1], device=model.device
|
|
),
|
|
)["hidden_states"][0]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = JambaForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class JambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
JambaModel,
|
|
JambaForCausalLM,
|
|
JambaForSequenceClassification,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (JambaForCausalLM,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": JambaModel,
|
|
"text-classification": JambaForSequenceClassification,
|
|
"text-generation": JambaForCausalLM,
|
|
"zero-shot": JambaForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = JambaModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=JambaConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_casual_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_decoder_model_past_with_large_inputs(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_load_balancing_loss(self):
|
|
r"""
|
|
Let's make sure we can actually compute the loss and do a backward on it.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.num_experts = 16
|
|
config.output_router_logits = True
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(config.pad_token_id).to(torch_device)
|
|
model = JambaForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask)
|
|
bs, seqlen = input_ids.shape
|
|
self.assertEqual(result.router_logits[0].shape, (bs * seqlen, config.num_experts))
|
|
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
|
|
|
|
# First, we make sure that adding padding tokens doesn't change the loss
|
|
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
|
|
pad_length = 1000
|
|
# Add padding tokens to input_ids
|
|
padding_block = config.pad_token_id * torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(
|
|
torch_device
|
|
)
|
|
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
|
|
padded_attention_mask = padded_input_ids.ne(config.pad_token_id).to(torch_device)
|
|
|
|
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
|
|
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
|
|
|
|
# We make sure that the loss of including padding tokens != the loss without padding tokens
|
|
# if attention_mask=None --> we don't exclude padding tokens
|
|
include_padding_result = model(padded_input_ids, attention_mask=None)
|
|
|
|
# This is to mimic torch.testing.assert_not_close
|
|
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
|
|
|
|
def test_initialization(self):
|
|
r"""
|
|
Overriding the test_initialization test as the A_log and D params of the Mamba block are initialized differently
|
|
"""
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
if "A_log" in name:
|
|
A = torch.arange(1, config.mamba_d_state + 1, dtype=torch.float32)[None, :]
|
|
self.assertTrue(torch.allclose(param.data, torch.log(A), atol=1e-5, rtol=1e-5))
|
|
elif "D" in name:
|
|
# check if it's a ones like
|
|
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
|
|
else:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_mismatched_shapes_have_properly_initialized_weights(self):
|
|
r"""
|
|
Overriding the test_mismatched_shapes_have_properly_initialized_weights test because A_log and D params of the
|
|
Mamba block are initialized differently and we tested that in test_initialization
|
|
"""
|
|
self.skipTest("Cumbersome and redundant for Jamba")
|
|
|
|
def test_attention_outputs(self):
|
|
r"""
|
|
Overriding the test_attention_outputs test as the Jamba model outputs attention only for its attention layers
|
|
"""
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
|
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
|
|
|
|
expected_num_attentions = math.ceil(
|
|
(self.model_tester.num_hidden_layers - self.model_tester.attn_layer_offset)
|
|
/ self.model_tester.attn_layer_period
|
|
)
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
added_hidden_states = 1
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), expected_num_attentions)
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
|
|
def test_left_padding_compatibility(self):
|
|
r"""
|
|
Overriding the test_left_padding_compatibility test as the mamba layers accentuate the numerical differences
|
|
effect of the left padding discussed in the issue in the note. Using a more permissive tolerance value.
|
|
"""
|
|
import inspect
|
|
# NOTE: left-padding results in small numerical differences. This is expected.
|
|
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
|
|
|
|
# First, filter out models that don't support left padding - generative and decoder-only.
|
|
# Jamba is a decoder-only architecture
|
|
decoder_only_classes = self.all_generative_model_classes
|
|
|
|
# Then, test left-padding
|
|
def _prepare_model_kwargs(input_ids, attention_mask, signature):
|
|
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
if "position_ids" in signature:
|
|
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
model_kwargs["position_ids"] = position_ids
|
|
if "cache_position" in signature:
|
|
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
|
|
model_kwargs["cache_position"] = cache_position
|
|
return model_kwargs
|
|
|
|
for model_class in decoder_only_classes:
|
|
config, input_ids, attention_mask = self._get_input_ids_and_config()
|
|
model = model_class(config).to(torch_device).eval()
|
|
signature = inspect.signature(model.forward).parameters.keys()
|
|
|
|
# Without padding
|
|
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
|
|
next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]
|
|
|
|
# With left-padding (length 32)
|
|
pad_size = (input_ids.shape[0], 32)
|
|
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
|
|
padded_input_ids = torch.cat((padding, input_ids), dim=1)
|
|
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
|
|
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
|
|
next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]
|
|
|
|
# They should result in very similar logits
|
|
self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=3e-3))
|
|
|
|
@unittest.skip("Jamba has its own special cache type") # FIXME: @gante
|
|
def test_assisted_decoding_matches_greedy_search_0_random(self):
|
|
pass
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@require_bitsandbytes
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_fp32_ln(self):
|
|
r"""
|
|
Overriding the test_flash_attn_2_fp32_ln test as the Jamba model, like Mixtral, doesn't support
|
|
right padding + use cache with FA2
|
|
"""
|
|
for model_class in self.all_generative_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
dummy_input = inputs_dict[model.main_input_name]
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
|
|
# NOTE: Jamba does not support right padding + use_cache with FA2.
|
|
dummy_attention_mask[:, -1] = 1
|
|
|
|
model = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
low_cpu_mem_usage=True,
|
|
load_in_4bit=True,
|
|
)
|
|
|
|
for _, param in model.named_parameters():
|
|
# upcast only layer norms
|
|
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
|
|
param.data = param.data.to(torch.float32)
|
|
|
|
_ = model(dummy_input)
|
|
# with attention mask
|
|
_ = model(dummy_input, attention_mask=dummy_attention_mask)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_generate_padding_right(self):
|
|
r"""
|
|
Overriding the test_flash_attn_2_generate_padding_right test as the Jamba model, like Mixtral, doesn't support
|
|
right padding + use cache with FA2
|
|
"""
|
|
import torch
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
|
|
torch_device
|
|
)
|
|
|
|
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
|
|
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)
|
|
|
|
model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)
|
|
|
|
model = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
low_cpu_mem_usage=True,
|
|
).to(torch_device)
|
|
|
|
with self.assertRaises(ValueError):
|
|
_ = model.generate(
|
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_generate_use_cache(self):
|
|
r"""
|
|
Overriding the test_flash_attn_2_generate_use_cache test as the Jamba model, like Mixtral, doesn't support
|
|
right padding + use cache with FA2
|
|
"""
|
|
import torch
|
|
|
|
max_new_tokens = 30
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
|
|
dummy_input = dummy_input.to(torch.float16)
|
|
|
|
# make sure that all models have enough positions for generation
|
|
if hasattr(config, "max_position_embeddings"):
|
|
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
|
|
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
|
|
# NOTE: Jamba does not support right padding + use_cache with FA2.
|
|
dummy_attention_mask[:, -1] = 1
|
|
|
|
model = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
low_cpu_mem_usage=True,
|
|
).to(torch_device)
|
|
|
|
# Just test that a large cache works as expected
|
|
_ = model.generate(
|
|
dummy_input,
|
|
attention_mask=dummy_attention_mask,
|
|
max_new_tokens=max_new_tokens,
|
|
do_sample=False,
|
|
use_cache=True,
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
r"""
|
|
Overriding the test_flash_attn_2_inference_padding_right test as the Jamba model, like Mixtral, doesn't support
|
|
right padding + use cache with FA2
|
|
"""
|
|
self.skipTest("Jamba flash attention does not support right padding")
|
|
|
|
@unittest.skip("Jamba has its own special cache type")
|
|
@parameterized.expand([(1, False), (1, True), (4, False)])
|
|
def test_new_cache_format(self, num_beams, do_sample):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class JambaModelIntegrationTest(unittest.TestCase):
|
|
model = None
|
|
tokenizer = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
model_id = "ai21labs/Jamba-tiny-random"
|
|
cls.model = JambaForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
@slow
|
|
def test_simple_generate(self):
|
|
self.model.to(torch_device)
|
|
|
|
input_ids = self.tokenizer("Hey how are you doing on this lovely evening?", return_tensors="pt")[
|
|
"input_ids"
|
|
].to(torch_device)
|
|
out = self.model.generate(input_ids, do_sample=False, max_new_tokens=10)
|
|
output_sentence = self.tokenizer.decode(out[0, :])
|
|
self.assertEqual(
|
|
output_sentence,
|
|
"<|startoftext|>Hey how are you doing on this lovely evening? Canyon rins hugaughter glamour Rutgers Singh Hebrew cases Cats",
|
|
)
|
|
|
|
with torch.no_grad():
|
|
logits = self.model(input_ids=input_ids).logits
|
|
|
|
EXPECTED_LOGITS_NO_GRAD = torch.tensor(
|
|
[
|
|
0.0140, -0.2246, 0.0408, -0.1016, 0.0471, 0.2715, -0.1465, 0.1631,
|
|
-0.2949, -0.0297, 0.0250, -0.5586, -0.2139, -0.1426, -0.1602, 0.1309,
|
|
0.0703, 0.2236, 0.1729, -0.2285, -0.1152, -0.1177, -0.1367, 0.0289,
|
|
0.1245, 0.2363, 0.0442, 0.1094, -0.1348, -0.2295, 0.1494, -0.3945,
|
|
0.1777, -0.4570, -0.0408, 0.2412, 0.1562, -0.1943, 0.2373, -0.0593
|
|
]
|
|
, dtype=torch.float32) # fmt: skip
|
|
|
|
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3)
|
|
|
|
@slow
|
|
def test_simple_batched_generate_with_padding(self):
|
|
self.model.to(torch_device)
|
|
|
|
inputs = self.tokenizer(
|
|
["Hey how are you doing on this lovely evening?", "Tell me a story"], padding=True, return_tensors="pt"
|
|
).to(torch_device)
|
|
out = self.model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
output_sentences = self.tokenizer.batch_decode(out)
|
|
self.assertEqual(
|
|
output_sentences[0],
|
|
"<|startoftext|>Hey how are you doing on this lovely evening? Canyon rins hugaughter glamour Rutgers Singh Hebrew cases Cats",
|
|
)
|
|
self.assertEqual(
|
|
output_sentences[1],
|
|
"<|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|startoftext|>Tell me a storyptus Nets Madison El chamadamodern updximVaparsed",
|
|
)
|
|
|
|
with torch.no_grad():
|
|
logits = self.model(input_ids=inputs["input_ids"]).logits
|
|
|
|
EXPECTED_LOGITS_NO_GRAD_0 = torch.tensor(
|
|
[
|
|
0.0140, -0.2246, 0.0408, -0.1016, 0.0471, 0.2715, -0.1465, 0.1631,
|
|
-0.2949, -0.0297, 0.0250, -0.5586, -0.2139, -0.1426, -0.1602, 0.1309,
|
|
0.0703, 0.2236, 0.1729, -0.2285, -0.1152, -0.1177, -0.1367, 0.0289,
|
|
0.1245, 0.2363, 0.0442, 0.1094, -0.1348, -0.2295, 0.1494, -0.3945,
|
|
0.1777, -0.4570, -0.0408, 0.2412, 0.1562, -0.1943, 0.2373, -0.0593
|
|
]
|
|
, dtype=torch.float32) # fmt: skip
|
|
|
|
EXPECTED_LOGITS_NO_GRAD_1 = torch.tensor(
|
|
[
|
|
-0.1289, 0.2363, -0.4180, -0.0302, -0.0476, 0.0327, 0.2578, 0.0874,
|
|
0.1484, 0.2305, -0.1152, -0.1396, -0.1494, -0.1113, -0.0021, -0.2832,
|
|
0.2002, -0.2676, 0.0598, -0.1982, -0.2539, -0.1133, -0.1973, 0.2148,
|
|
0.0559, 0.1670, 0.1846, 0.1270, 0.1680, -0.1250, -0.2656, -0.2871,
|
|
0.2344, 0.2637, 0.0510, -0.1855, 0.2158, -0.1289, 0.1758, 0.0074
|
|
]
|
|
, dtype=torch.float32) # fmt: skip
|
|
|
|
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_0, rtol=1e-3, atol=1e-3)
|
|
torch.testing.assert_close(logits[1, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_1, rtol=1e-3, atol=1e-3)
|