transformers/tests/models/idefics/test_modeling_tf_idefics.py

566 lines
25 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TF Idefics model. """
import os
import tempfile
import unittest
from importlib import import_module
from transformers import IdeficsConfig, is_tf_available, is_vision_available
from transformers.testing_utils import TestCasePlus, is_pt_tf_cross_test, require_tf, require_vision, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import IdeficsProcessor, TFIdeficsForVisionText2Text, TFIdeficsModel
from transformers.modeling_tf_utils import keras
from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig
if is_vision_available():
from PIL import Image
IDEFICS_TINY_RANDOM_MODEL = "HuggingFaceM4/tiny-random-idefics"
class IdeficsModelTester:
def __init__(
self,
parent,
batch_size=1,
seq_length=7,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None,
modality_type_vocab_size=2,
vision_embed_dim=32,
vision_patch_size=2,
vision_image_size=30,
vision_num_attention_heads=4,
vision_num_hidden_layers=5,
vision_intermediate_size=37,
perceiver_qk_layer_norms_perceiver=False,
perceiver_resampler_depth=2,
perceiver_resampler_head_dim=8,
perceiver_resampler_n_heads=2,
perceiver_resampler_n_latents=16,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.modality_type_vocab_size = modality_type_vocab_size
self.vision_embed_dim = vision_embed_dim
self.vision_patch_size = vision_patch_size
self.vision_image_size = vision_image_size
self.vision_num_attention_heads = vision_num_attention_heads
self.vision_num_hidden_layers = vision_num_hidden_layers
self.vision_intermediate_size = vision_intermediate_size
self.vision_config = IdeficsVisionConfig(
embed_dim=self.vision_embed_dim,
patch_size=self.vision_patch_size,
image_size=self.vision_image_size,
num_attention_heads=self.vision_num_attention_heads,
num_hidden_layers=self.vision_num_hidden_layers,
intermediate_size=self.vision_intermediate_size,
)
self.perceiver_qk_layer_norms_perceiver = perceiver_qk_layer_norms_perceiver
self.perceiver_resampler_depth = perceiver_resampler_depth
self.perceiver_resampler_head_dim = perceiver_resampler_head_dim
self.perceiver_resampler_n_heads = perceiver_resampler_n_heads
self.perceiver_resampler_n_latents = perceiver_resampler_n_latents
self.perceiver_config = IdeficsPerceiverConfig(
qk_layer_norms_perceiver=self.perceiver_qk_layer_norms_perceiver,
resampler_depth=self.perceiver_resampler_depth,
resampler_head_dim=self.perceiver_resampler_head_dim,
resampler_n_heads=self.perceiver_resampler_n_heads,
resampler_n_latents=self.perceiver_resampler_n_latents,
)
# we set the expected sequence length (which is used in several tests)
# this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1
def prepare_config_and_inputs(self, num_images=1, interpolate_pos_encoding=False, image_expansion=0):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
pixel_values = floats_tensor(
[
self.batch_size,
num_images,
self.num_channels,
self.image_size + image_expansion,
self.image_size + image_expansion,
]
)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, num_images])
config = self.get_config()
return (config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding)
def get_config(self):
return IdeficsConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
num_labels=self.num_labels,
modality_type_vocab_size=self.modality_type_vocab_size,
vision_config=self.vision_config,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
pixel_values,
image_attention_mask,
interpolate_pos_encoding,
):
model = TFIdeficsModel(config=config)
result = model(
input_ids,
attention_mask=input_mask,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
interpolate_pos_encoding=interpolate_pos_encoding,
)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, input_ids.shape[1], self.hidden_size)
)
def create_and_check_model_gen(
self,
config,
input_ids,
input_mask,
pixel_values,
image_attention_mask,
interpolate_pos_encoding,
):
model = TFIdeficsForVisionText2Text(config)
model.generate(
input_ids,
attention_mask=input_mask,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
interpolate_pos_encoding=interpolate_pos_encoding,
max_length=self.seq_length + 2,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
pixel_values,
image_attention_mask,
interpolate_pos_encoding,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"pixel_values": pixel_values,
"image_attention_mask": image_attention_mask,
"interpolate_pos_encoding": interpolate_pos_encoding,
}
return config, inputs_dict
def prepare_pixel_values(self):
return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@require_tf
class TFIdeficsModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFIdeficsModel, TFIdeficsForVisionText2Text) if is_tf_available() else ()
pipeline_model_mapping = {"feature-extraction": TFIdeficsModel} if is_tf_available() else {}
test_pruning = False
test_headmasking = False
test_onnx = False
test_resize_embeddings = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
# XXX: IdeficsForVisionText2TextTest has no MODEL_FOR group yet, but it should be the same
# as MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, so for now manually changing to do the right thing
# as super won't do it
if return_labels:
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int64
)
return inputs_dict
def test_model_outputs_equivalence(self):
try:
orig = self.all_model_classes
# IdeficsModel.forward doesn't have labels input arg - only IdeficsForVisionText2Text does
self.all_model_classes = (TFIdeficsForVisionText2Text,) if is_tf_available() else ()
super().test_model_outputs_equivalence()
finally:
self.all_model_classes = orig
def setUp(self):
self.model_tester = IdeficsModelTester(self)
self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_single_image(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=False, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_multiple_images(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=False, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_image_pos_embeddings_interpolation_single_image(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model(*config_and_inputs)
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=True, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_image_pos_embeddings_interpolation_multiple_images(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model(*config_and_inputs)
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=True, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_generate_with_image_pos_embeddings_interpolation_single_image(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model_gen(*config_and_inputs)
def test_generate_with_image_pos_embeddings_interpolation_multiple_images(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model_gen(*config_and_inputs)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
def test_retain_grad_hidden_states_attentions(self):
return
@unittest.skip(reason="IDEFICS uses out-of-bounds embeddings deliberately.")
def test_embeddings_out_of_bounds_raise_exception(self):
pass
@unittest.skip(reason="IDEFICS attention weights are not extracted in scaled_dot_product_attention")
def test_prepare_serving_output(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, tf.keras.layers.Layer))
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
# IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
self.assertTrue(attentions[0] is None)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
# IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
self.assertTrue(self_attentions[0] is None)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
self.has_attentions = False
super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys)
def test_keras_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_main_layer_classes = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(module)
if module_member_name.endswith("MainLayer")
for module_member in (getattr(module, module_member_name),)
if isinstance(module_member, type)
and keras.layers.Layer in module_member.__bases__
and getattr(module_member, "_keras_serializable", False)
}
for main_layer_class in tf_main_layer_classes:
main_layer = main_layer_class(config)
symbolic_inputs = {
name: keras.Input(tensor.shape[1:], dtype=tensor.dtype, batch_size=2)
for name, tensor in inputs_dict.items()
if tf.is_tensor(tensor)
}
model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
outputs = model(inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "keras_model.h5")
model.save(filepath)
model = keras.models.load_model(filepath, custom_objects={main_layer_class.__name__: main_layer_class})
assert isinstance(model, keras.Model)
after_outputs = model(inputs_dict)
self.assert_outputs_same(after_outputs, outputs)
@unittest.skip(reason="IDEFICS test_keras_fit testing done in TFIdeficsForVisionText2TextTest")
def test_keras_fit(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFIdeficsModel.from_pretrained(IDEFICS_TINY_RANDOM_MODEL, from_pt=True)
self.assertIsNotNone(model)
@unittest.skip(reason="Currently `saved_model` doesn't work with nested outputs.")
def test_saved_model_creation(self):
pass
@unittest.skip(reason="""IDEFICS loss computation not implemented yet""")
def test_loss_computation(self):
pass
@require_tf
class TFIdeficsForVisionText2TextTest(TFIdeficsModelTest, unittest.TestCase):
all_model_classes = (TFIdeficsForVisionText2Text,) if is_tf_available() else ()
test_resize_embeddings = False
def setUp(self):
self.model_tester = IdeficsModelTester(
self,
modality_type_vocab_size=3,
)
self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)
@unittest.skip("We only test the model that takes in multiple images")
def test_model(self):
pass
@unittest.skip("We only test the model that takes in multiple images")
def test_for_token_classification(self):
pass
@unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="""IDEFICS loss computation not implemented yet""")
def test_loss_computation(self):
pass
@slow
def test_keras_fit(self):
super().test_keras_fit()
# Below is the expected output for the integration test TFIdeficsModelIntegrationTest.
# Since we are using tiny-random to be able to fit it on the CI GPU,it is better to assert on the
# ids because the generated text is gibberish
# fmt: off
EXPECTED_GENERATED_IDS = [[0, 0, 1, 4911, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 530, 1967, 310, 1023, 26361, 29889, 13, 2659, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 25519, 22326, 8071, 26357, 28004, 4428, 5916, 14383, 1033, 12358, 10536, 21834, 10447, 21201, 18102, 16886, 8875, 25388, 25914, 28304, 8558, 31048, 1322, 25952, 189, 31600, 3600, 12824, 7045, 28090, 20228, 32001, 5385, 29186, 2165, 11822, 13825, 23077, 7883, 22504, 2078, 18893, 2179, 10556, 9515, 7672, 3491, 12403, 5398, 27299, 6463, 16349, 23037, 28956, 16960, 22664, 7724, 17587, 17424, 10175, 17417, 5930, 30855, 17695, 16170, 14474, 29996, 313, 14502, 3241, 13618, 32001, 5385, 29186, 2165, 11822, 13825, 19934, 4875, 27142, 3230, 2709, 28054, 3270, 19148, 10917, 1060, 26443, 12259, 1347, 28482, 3830, 25519, 199, 12782, 9144, 12289, 1142, 18400, 21390, 19129, 7292, 28430, 24711, 5551, 30349, 30533, 13271, 17697, 4982, 8713, 5380, 17869, 12490, 5398, 27299, 11593, 19918, 15924, 29430, 10175, 17417, 5930, 30855, 17695, 16170, 14474, 19234],
[1, 4911, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 530, 1967, 310, 1023, 413, 986, 575, 29889, 13, 2659, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 25519, 22326, 8071, 26357, 28004, 4428, 17554, 20500, 21714, 27834, 4798, 12195, 30379, 5427, 20228, 10473, 14351, 8049, 15605, 14491, 212, 2711, 32000, 21714, 31259, 24368, 19036, 22970, 26083, 19394, 20372, 7672, 9939, 25388, 30533, 8200, 30271, 2114, 24749, 13224, 10603, 21118, 2179, 3759, 16515, 6587, 1287, 23998, 17793, 32001, 5385, 29186, 2165, 11822, 13825, 29732, 17503, 2729, 6722, 2943, 1221, 16043, 18244, 24965, 14383, 19840, 5980, 13488, 28531, 735, 26146, 22504, 2078, 18893, 20372, 7672, 32001, 5385, 29186, 2165, 11822, 13825, 29732, 17503, 2729, 6722, 19551, 220, 10528, 28940, 4453, 28266, 15416, 18693, 8199, 1153, 27706, 29231, 29186, 2165, 11822, 13825, 29732, 17503, 2729, 6722, 19551, 8231, 10739, 31992, 25906, 22254, 23127, 7689, 19614, 1149, 18844, 23037, 28956, 16960, 22664, 6975, 28938, 24002, 11026, 15020, 21964, 16307], ]
@require_tf
@require_vision
class TFIdeficsModelIntegrationTest(TestCasePlus):
@cached_property
def default_processor(self):
return IdeficsProcessor.from_pretrained(IDEFICS_TINY_RANDOM_MODEL) if is_vision_available() else None
@slow
def test_inference_natural_language_visual_reasoning(self):
cat_image_path = self.tests_dir / "fixtures/tests_samples/COCO/000000039769.png"
cats_image_obj = Image.open(cat_image_path) # 2 cats
dogs_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg"
prompts = [
[
"User:",
dogs_image_url,
"Describe this image.\nAssistant: An image of two dogs.\n",
"User:",
cats_image_obj,
"Describe this image.\nAssistant:",
],
[
"User:",
cats_image_obj,
"Describe this image.\nAssistant: An image of two kittens.\n",
"User:",
dogs_image_url,
"Describe this image.\nAssistant:",
],
]
model = TFIdeficsForVisionText2Text.from_pretrained(IDEFICS_TINY_RANDOM_MODEL, from_pt=True)
processor = self.default_processor
inputs = processor(prompts, return_tensors="tf")
generated_ids = model.generate(**inputs, max_length=100)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
# keep for debugging
for i, t in enumerate(generated_text):
t = bytes(t, "utf-8").decode("unicode_escape")
print(f"{i}:\n{t}\n")
self.assertListEqual(EXPECTED_GENERATED_IDS[0], generated_ids[0].numpy().tolist())
self.assertListEqual(EXPECTED_GENERATED_IDS[1], generated_ids[1].numpy().tolist())