transformers/tests/models/grounding_dino/test_modeling_grounding_din...

716 lines
29 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Grounding DINO model. """
import collections
import inspect
import math
import re
import unittest
from transformers import (
GroundingDinoConfig,
SwinConfig,
is_torch_available,
is_vision_available,
)
from transformers.file_utils import cached_property
from transformers.testing_utils import (
require_timm,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GroundingDinoForObjectDetection, GroundingDinoModel
from transformers.pytorch_utils import id_tensor_storage
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor
class GroundingDinoModelTester:
def __init__(
self,
parent,
batch_size=4,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_queries=2,
num_channels=3,
image_size=98,
n_targets=8,
num_labels=3,
num_feature_levels=4,
encoder_n_points=2,
decoder_n_points=6,
max_text_len=7,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_queries = num_queries
self.num_channels = num_channels
self.image_size = image_size
self.n_targets = n_targets
self.num_labels = num_labels
self.num_feature_levels = num_feature_levels
self.encoder_n_points = encoder_n_points
self.decoder_n_points = decoder_n_points
self.max_text_len = max_text_len
# we also set the expected seq length for both encoder and decoder
self.encoder_seq_length_vision = (
math.ceil(self.image_size / 8) ** 2
+ math.ceil(self.image_size / 16) ** 2
+ math.ceil(self.image_size / 32) ** 2
+ math.ceil(self.image_size / 64) ** 2
)
self.encoder_seq_length_text = self.max_text_len
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device)
input_ids = ids_tensor([self.batch_size, self.max_text_len], self.num_labels)
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device)
labels.append(target)
config = self.get_config()
return config, pixel_values, pixel_mask, input_ids, labels
def get_config(self):
swin_config = SwinConfig(
window_size=7,
embed_dim=8,
depths=[1, 1, 1, 1],
num_heads=[1, 1, 1, 1],
image_size=self.image_size,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
)
text_backbone = {
"hidden_size": 8,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"intermediate_size": 8,
"max_position_embeddings": 8,
"model_type": "bert",
}
return GroundingDinoConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
num_queries=self.num_queries,
num_labels=self.num_labels,
num_feature_levels=self.num_feature_levels,
encoder_n_points=self.encoder_n_points,
decoder_n_points=self.decoder_n_points,
use_timm_backbone=False,
backbone_config=swin_config,
max_text_len=self.max_text_len,
text_config=text_backbone,
)
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, input_ids, labels = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask, "input_ids": input_ids}
return config, inputs_dict
def create_and_check_model(self, config, pixel_values, pixel_mask, input_ids, labels):
model = GroundingDinoModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, input_ids=input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size))
def create_and_check_object_detection_head_model(self, config, pixel_values, pixel_mask, input_ids, labels):
model = GroundingDinoForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, input_ids=input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, config.max_text_len))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, input_ids=input_ids, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, config.max_text_len))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
@require_torch
class GroundingDinoModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GroundingDinoModel, GroundingDinoForObjectDetection) if is_torch_available() else ()
is_encoder_decoder = True
test_torchscript = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
pipeline_model_mapping = (
{"image-feature-extraction": GroundingDinoModel, "zero-shot-object-detection": GroundingDinoForObjectDetection}
if is_torch_available()
else {}
)
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "GroundingDinoForObjectDetection":
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
target["masks"] = torch.ones(
self.model_tester.n_targets,
self.model_tester.image_size,
self.model_tester.image_size,
device=torch_device,
dtype=torch.float,
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = GroundingDinoModelTester(self)
self.config_tester = ConfigTester(self, config_class=GroundingDinoConfig, has_text_modality=False)
def test_config(self):
# we don't test common_properties and arguments_init as these don't apply for Grounding DINO
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_object_detection_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_object_detection_head_model(*config_and_inputs)
@unittest.skip(reason="Grounding DINO does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Grounding DINO does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Grounding DINO does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.encoder_n_points,
],
)
out_len = len(outputs)
correct_outlen = 10
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Object Detection model returns pred_logits and pred_boxes
if model_class.__name__ == "GroundingDinoForObjectDetection":
correct_outlen += 2
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions[0]
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries],
)
# cross attentions
cross_attentions = outputs.decoder_attentions[-1]
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.decoder_n_points,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 3, len(outputs))
self_attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.encoder_n_points,
],
)
# overwrite since hidden_states are called encoder_text_hidden_states
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_vision_hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = self.model_tester.encoder_seq_length_vision
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_len, self.model_tester.hidden_size],
)
hidden_states = outputs.encoder_text_hidden_states
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = self.model_tester.encoder_seq_length_text
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_len, self.model_tester.hidden_size],
)
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_vision_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0][0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
cross_attentions = outputs.decoder_attentions[-1][0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "input_ids"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_different_timm_backbone(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# let's pick a random timm backbone
config.backbone = "tf_mobilenetv3_small_075"
config.use_timm_backbone = True
config.backbone_config = None
config.backbone_kwargs = {"in_chans": 3, "out_indices": (2, 3, 4)}
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "GroundingDinoForObjectDetection":
expected_shape = (
self.model_tester.batch_size,
self.model_tester.num_queries,
config.max_text_len,
)
self.assertEqual(outputs.logits.shape, expected_shape)
self.assertTrue(outputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if (
"level_embed" in name
or "sampling_offsets.bias" in name
or "text_param" in name
or "vision_param" in name
or "value_proj" in name
or "output_proj" in name
or "reference_points" in name
):
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# Copied from tests.models.deformable_detr.test_modeling_deformable_detr.DeformableDetrModelTest.test_two_stage_training with DeformableDetr->GroundingDino
def test_two_stage_training(self):
model_class = GroundingDinoForObjectDetection
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
config.two_stage = True
config.auxiliary_loss = True
config.with_box_refine = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_tied_weights_keys(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
config.tie_word_embeddings = True
for model_class in self.all_model_classes:
model_tied = model_class(config)
ptrs = collections.defaultdict(list)
for name, tensor in model_tied.state_dict().items():
ptrs[id_tensor_storage(tensor)].append(name)
# These are all the pointers of shared tensors.
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
# Detect we get a hit for each key
for key in tied_weight_keys:
if not any(re.search(key, p) for group in tied_params for p in group):
raise ValueError(f"{key} is not a tied weight key for {model_class}.")
# Removed tied weights found from tied params -> there should only be one left after
for key in tied_weight_keys:
for i in range(len(tied_params)):
tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]
# GroundingDino when sharing weights also uses the shared ones in GroundingDinoDecoder
# Therefore, differently from DeformableDetr, we expect the group lens to be 2
# one for self.bbox_embed in GroundingDinoForObejectDetection and another one
# in the decoder
tied_params = [group for group in tied_params if len(group) > 2]
self.assertListEqual(
tied_params,
[],
f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
def prepare_text():
text = "a cat."
return text
@require_timm
@require_vision
@slow
class GroundingDinoModelIntegrationTests(unittest.TestCase):
@cached_property
def default_processor(self):
return AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny") if is_vision_available() else None
def test_inference_object_detection_head(self):
model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny").to(torch_device)
processor = self.default_processor
image = prepare_img()
text = prepare_text()
encoding = processor(images=image, text=text, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.d_model))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_boxes = torch.tensor(
[[0.7674, 0.4136, 0.4572], [0.2566, 0.5463, 0.4760], [0.2585, 0.5442, 0.4641]]
).to(torch_device)
expected_logits = torch.tensor(
[[-4.8913, -0.1900, -0.2161], [-4.9653, -0.3719, -0.3950], [-5.9599, -3.3765, -3.3104]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-3))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4))
# verify postprocessing
results = processor.image_processor.post_process_object_detection(
outputs, threshold=0.35, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.4526, 0.4082]).to(torch_device)
expected_slice_boxes = torch.tensor([344.8143, 23.1796, 637.4004, 373.8295]).to(torch_device)
self.assertEqual(len(results["scores"]), 2)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-3))
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes, atol=1e-2))
# verify grounded postprocessing
expected_labels = ["a cat", "a cat"]
results = processor.post_process_grounded_object_detection(
outputs=outputs,
input_ids=encoding.input_ids,
box_threshold=0.35,
text_threshold=0.3,
target_sizes=[image.size[::-1]],
)[0]
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-3))
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes, atol=1e-2))
self.assertListEqual(results["labels"], expected_labels)
@require_torch_gpu
def test_inference_object_detection_head_equivalence_cpu_gpu(self):
processor = self.default_processor
image = prepare_img()
text = prepare_text()
encoding = processor(images=image, text=text, return_tensors="pt")
# 1. run model on CPU
model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny")
with torch.no_grad():
cpu_outputs = model(**encoding)
# 2. run model on GPU
model.to("cuda")
encoding = encoding.to("cuda")
with torch.no_grad():
gpu_outputs = model(**encoding)
# 3. assert equivalence
for key in cpu_outputs.keys():
self.assertTrue(torch.allclose(cpu_outputs[key], gpu_outputs[key].cpu(), atol=1e-3))
expected_logits = torch.tensor(
[[-4.8915, -0.1900, -0.2161], [-4.9658, -0.3716, -0.3948], [-5.9596, -3.3763, -3.3103]]
)
self.assertTrue(torch.allclose(cpu_outputs.logits[0, :3, :3], expected_logits, atol=1e-3))
# assert postprocessing
results_cpu = processor.image_processor.post_process_object_detection(
cpu_outputs, threshold=0.35, target_sizes=[image.size[::-1]]
)[0]
result_gpu = processor.image_processor.post_process_object_detection(
gpu_outputs, threshold=0.35, target_sizes=[image.size[::-1]]
)[0]
self.assertTrue(torch.allclose(results_cpu["scores"], result_gpu["scores"].cpu(), atol=1e-3))
self.assertTrue(torch.allclose(results_cpu["boxes"], result_gpu["boxes"].cpu(), atol=1e-3))
def test_cross_attention_mask(self):
model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny").to(torch_device)
processor = self.default_processor
image = prepare_img()
text1 = "a cat."
text2 = "a remote control."
text_batched = [text1, text2]
encoding1 = processor(images=image, text=text1, return_tensors="pt").to(torch_device)
encoding2 = processor(images=image, text=text2, return_tensors="pt").to(torch_device)
# If we batch the text and cross attention masking is working the batched result should be equal to
# The singe text result
encoding_batched = processor(
images=[image] * len(text_batched), text=text_batched, padding="longest", return_tensors="pt"
).to(torch_device)
with torch.no_grad():
outputs1 = model(**encoding1)
outputs2 = model(**encoding2)
outputs_batched = model(**encoding_batched)
self.assertTrue(torch.allclose(outputs1.logits, outputs_batched.logits[:1], atol=1e-3))
# For some reason 12 elements are > 1e-3, but the rest are fine
self.assertTrue(torch.allclose(outputs2.logits, outputs_batched.logits[1:], atol=1.8e-3))