245 lines
9.5 KiB
Python
245 lines
9.5 KiB
Python
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import random
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers import BertTokenizer, BertTokenizerFast
|
|
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_vision
|
|
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import FlavaImageProcessor, FlavaProcessor
|
|
from transformers.models.flava.image_processing_flava import (
|
|
FLAVA_CODEBOOK_MEAN,
|
|
FLAVA_CODEBOOK_STD,
|
|
FLAVA_IMAGE_MEAN,
|
|
FLAVA_IMAGE_STD,
|
|
)
|
|
|
|
|
|
@require_vision
|
|
class FlavaProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write("".join([x + "\n" for x in vocab_tokens]))
|
|
|
|
image_processor_map = {
|
|
"image_mean": FLAVA_IMAGE_MEAN,
|
|
"image_std": FLAVA_IMAGE_STD,
|
|
"do_normalize": True,
|
|
"do_resize": True,
|
|
"size": 224,
|
|
"do_center_crop": True,
|
|
"crop_size": 224,
|
|
"input_size_patches": 14,
|
|
"total_mask_patches": 75,
|
|
"mask_group_max_patches": None,
|
|
"mask_group_min_patches": 16,
|
|
"mask_group_min_aspect_ratio": 0.3,
|
|
"mask_group_max_aspect_ratio": None,
|
|
"codebook_do_resize": True,
|
|
"codebook_size": 112,
|
|
"codebook_do_center_crop": True,
|
|
"codebook_crop_size": 112,
|
|
"codebook_do_map_pixels": True,
|
|
"codebook_do_normalize": True,
|
|
"codebook_image_mean": FLAVA_CODEBOOK_MEAN,
|
|
"codebook_image_std": FLAVA_CODEBOOK_STD,
|
|
}
|
|
|
|
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
|
|
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
|
|
json.dump(image_processor_map, fp)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return FlavaImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer_slow = self.get_tokenizer()
|
|
tokenizer_fast = self.get_rust_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor_slow = FlavaProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
|
|
processor_slow.save_pretrained(self.tmpdirname)
|
|
processor_slow = FlavaProcessor.from_pretrained(self.tmpdirname, use_fast=False)
|
|
|
|
processor_fast = FlavaProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
|
|
processor_fast.save_pretrained(self.tmpdirname)
|
|
processor_fast = FlavaProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
|
|
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
|
|
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
|
|
self.assertIsInstance(processor_slow.tokenizer, BertTokenizer)
|
|
self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast)
|
|
|
|
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
|
|
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
|
|
self.assertIsInstance(processor_slow.image_processor, FlavaImageProcessor)
|
|
self.assertIsInstance(processor_fast.image_processor, FlavaImageProcessor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = FlavaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = FlavaProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, BertTokenizerFast)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, FlavaImageProcessor)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
# With rest of the args
|
|
random.seed(1234)
|
|
input_feat_extract = image_processor(
|
|
image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np"
|
|
)
|
|
random.seed(1234)
|
|
input_processor = processor(
|
|
images=image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np"
|
|
)
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])
|
|
|
|
# add extra args
|
|
inputs = processor(text=input_str, images=image_input, return_codebook_pixels=True, return_image_mask=True)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
[
|
|
"input_ids",
|
|
"token_type_ids",
|
|
"attention_mask",
|
|
"pixel_values",
|
|
"codebook_pixel_values",
|
|
"bool_masked_pos",
|
|
],
|
|
)
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
|