transformers/tests/models/flava/test_modeling_flava.py

1393 lines
53 KiB
Python

# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch FLAVA model. """
import inspect
import os
import random
import tempfile
import unittest
import numpy as np
import requests
from transformers import (
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FlavaForPreTraining,
FlavaImageCodebook,
FlavaImageModel,
FlavaModel,
FlavaMultimodalModel,
FlavaTextModel,
)
else:
FlavaModel = None
FlavaForPreTraining = None
torch = {}
if is_vision_available():
from PIL import Image
from transformers import FlavaProcessor
class FlavaImageModelTester:
def __init__(
self,
parent,
batch_size=12,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=30,
patch_size=2,
num_channels=3,
qkv_bias=True,
mask_token=True,
vocab_size=99,
):
self.parent = parent
self.batch_size = batch_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.mask_token = mask_token
self.vocab_size = vocab_size
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
num_patches = self.image_size // self.patch_size
bool_masked_pos = (
torch.rand((self.batch_size, num_patches, num_patches), device=pixel_values.device) < 0.9
).long()
config = self.get_config()
return config, pixel_values, bool_masked_pos
def get_config(self):
return FlavaImageConfig(
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
qkv_bias=self.qkv_bias,
mask_token=self.mask_token,
vocab_size=self.vocab_size,
)
def create_and_check_model(self, config, pixel_values, bool_masked_pos):
model = FlavaImageModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values, bool_masked_pos)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, bool_masked_pos = config_and_inputs
inputs_dict = {"pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos}
return config, inputs_dict
@require_torch
class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as FLAVA does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (FlavaImageModel,) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = FlavaImageModelTester(self)
self.config_tester = ConfigTester(self, config_class=FlavaImageConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in FLAVA, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = (self.model_tester.image_size, self.model_tester.image_size)
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# FLAVA has a different seq_length
image_size = (self.model_tester.image_size, self.model_tester.image_size)
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_length = num_patches + 1
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# skip this test as FlavaImageModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaImageModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "facebook/flava-full"
model = FlavaImageModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
vocab_size=102,
type_vocab_size=2,
max_position_embeddings=512,
position_embedding_type="absolute",
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
qkv_bias=True,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.seq_length = seq_length
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.pad_token_id = pad_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask
def get_config(self):
return FlavaTextConfig(
vocab_size=self.vocab_size,
type_vocab_size=self.type_vocab_size,
max_position_embeddings=self.max_position_embeddings,
position_embedding_type=self.position_embedding_type,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
pad_token_id=self.pad_token_id,
qkv_bias=self.qkv_bias,
)
def create_and_check_model(self, config, input_ids, token_type_ids, input_mask):
model = FlavaTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (FlavaTextModel,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_torchscript = False
def setUp(self):
self.model_tester = FlavaTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=FlavaTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
# skip this test as FlavaTextModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaTextModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "facebook/flava-full"
model = FlavaTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaMultimodalModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=44,
use_input_mask=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
qkv_bias=True,
ce_ignore_index=-100,
use_cls_token=True,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.use_input_mask = use_input_mask
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.ce_ignore_index = ce_ignore_index
self.use_cls_token = use_cls_token
def prepare_config_and_inputs(self):
hidden_states = floats_tensor([self.batch_size, self.seq_length - 1, self.hidden_size])
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, hidden_states, input_mask
def get_config(self):
return FlavaMultimodalConfig(
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
qkv_bias=self.qkv_bias,
use_cls_token=self.use_cls_token,
ce_ignore_index=self.ce_ignore_index,
)
def create_and_check_model(self, config, hidden_states, input_mask):
model = FlavaMultimodalModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(hidden_states, attention_mask=input_mask)
result = model(hidden_states)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, hidden_states, input_mask = config_and_inputs
inputs_dict = {"hidden_states": hidden_states, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (FlavaMultimodalModel,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
def setUp(self):
self.model_tester = FlavaMultimodalModelTester(self)
self.config_tester = ConfigTester(
self, config_class=FlavaMultimodalConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["hidden_states"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model_common_attributes(self):
# No embedding in multimodal model
pass
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
# skip this test as FlavaMultimodalModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaMultimodalModel has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "facebook/flava-full"
model = FlavaMultimodalModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaImageCodebookTester:
def __init__(
self,
parent,
batch_size=12,
image_size=112,
num_channels=3,
hidden_size=32,
num_groups=2,
vocab_size=99,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.hidden_size = hidden_size
self.num_groups = num_groups
self.vocab_size = vocab_size
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return FlavaImageCodebookConfig(
hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size
)
def create_and_check_model(self, config, pixel_values):
model = FlavaImageCodebook(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
self.parent.assertEqual(
result.shape, (self.batch_size, config.vocab_size, self.image_size // 8, self.image_size // 8)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (FlavaImageCodebook,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
has_attentions = False
def setUp(self):
self.model_tester = FlavaImageCodebookTester(self)
self.config_tester = ConfigTester(self, config_class=FlavaImageCodebookConfig, has_text_modality=False)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@unittest.skip(reason="Flava does not output attentions")
def test_attention_outputs(self):
pass
def test_model_common_attributes(self):
# No embedding in multimodal model
pass
def test_training(self):
pass
def test_hidden_states_output(self):
pass
def test_retain_grad_hidden_states_attentions(self):
# no attentions
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_inputs_embeds(self):
# FLAVA does not use inputs_embeds
pass
def test_model_outputs_equivalence(self):
pass
# skip this test as FlavaImageCodebook has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_from_base(self):
pass
# skip this test as FlavaImageCodebook has no base class and is
# not available in MODEL_MAPPING
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "facebook/flava-full"
model = FlavaImageCodebook.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaModelTester:
model_class = FlavaModel
def __init__(
self,
parent,
text_kwargs=None,
image_kwargs=None,
multimodal_kwargs=None,
image_codebook_kwargs=None,
is_training=True,
hidden_size=32,
projection_dim=32,
initializer_range=0.02,
layer_norm_eps=1e-12,
):
if text_kwargs is None:
text_kwargs = {}
if image_kwargs is None:
image_kwargs = {}
if multimodal_kwargs is None:
multimodal_kwargs = {}
if image_codebook_kwargs is None:
image_codebook_kwargs = {}
self.parent = parent
self.image_model_tester = FlavaImageModelTester(parent, **image_kwargs)
self.text_model_tester = FlavaTextModelTester(parent, **text_kwargs)
self.multimodal_model_tester = FlavaMultimodalModelTester(parent, **multimodal_kwargs)
self.image_codebook_tester = FlavaImageCodebookTester(parent, **image_codebook_kwargs)
self.is_training = is_training
self.config_tester = ConfigTester(self, config_class=FlavaConfig, hidden_size=37)
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
def test_config(self):
self.config_tester.run_common_tests()
def prepare_config_and_inputs_for_common(self):
_, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs()
_, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"bool_masked_pos": bool_masked_pos,
}
def get_config(self):
return FlavaConfig.from_configs(
self.image_model_tester.get_config(),
self.text_model_tester.get_config(),
self.multimodal_model_tester.get_config(),
self.image_codebook_tester.get_config(),
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
)
def create_and_check_model(self, config, inputs):
self._test_model(config, inputs, test_image=True)
self._test_model(config, inputs, test_text=True)
self._test_model(config, inputs, test_image=True, test_text=True)
def _test_model(self, config, inputs, test_image=False, test_text=False):
model = self.model_class(config).to(torch_device).eval()
with torch.no_grad():
result = model(
input_ids=inputs["input_ids"] if test_text else None,
attention_mask=inputs["attention_mask"] if test_text else None,
token_type_ids=inputs["token_type_ids"] if test_text else None,
pixel_values=inputs["pixel_values"] if test_image else None,
bool_masked_pos=inputs["bool_masked_pos"] if test_image else None,
)
image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size)
patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
if test_image:
self.parent.assertEqual(
result.image_embeddings.shape,
(self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size),
)
else:
self.parent.assertIsNone(result.image_embeddings)
if test_text:
self.parent.assertEqual(
result.text_embeddings.shape,
(
self.text_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.hidden_size,
),
)
else:
self.parent.assertIsNone(result.text_embeddings)
if test_image and test_text:
self.parent.assertEqual(
result.multimodal_embeddings.shape,
(
self.multimodal_model_tester.batch_size,
self.text_model_tester.seq_length + num_patches + 2,
self.multimodal_model_tester.hidden_size,
),
)
else:
self.parent.assertIsNone(result.multimodal_embeddings)
@require_torch
class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (FlavaModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": FlavaModel} if is_torch_available() else {}
class_for_tester = FlavaModelTester
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = self.class_for_tester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
# hidden_states are tested in individual model tests
def test_hidden_states_output(self):
pass
# input_embeds are tested in individual model tests
def test_inputs_embeds(self):
pass
# tested in individual model tests
def test_retain_grad_hidden_states_attentions(self):
pass
# FlavaModel does not have input/output embeddings
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for FLAVA
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale" or name == "flava.logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
configs_no_init.return_loss = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # FLAVA needs pixel_values
if "input_ids_masked" in inputs_dict:
# For pretraining
inputs = (input_ids, inputs_dict["input_ids_masked"], pixel_values)
else:
inputs = (input_ids, pixel_values)
traced_model = torch.jit.trace(model, inputs)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
# Non persistent buffers won't be in original state dict
loaded_model_state_dict.pop("text_model.embeddings.token_type_ids", None)
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_image_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save FlavaConfig and check if we can load FlavaImageConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
image_config = FlavaImageConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.image_config.to_dict(), image_config.to_dict())
# Save FlavaConfig and check if we can load FlavaTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = FlavaTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
# Save FlavaConfig and check if we can load FlavaMultimodalConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
multimodal_config = FlavaMultimodalConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.multimodal_config.to_dict(), multimodal_config.to_dict())
# overwrite from common since FlavaModel/TFFlavaModel return FLAVAOutput/TFFLAVAOutput
@slow
def test_model_from_pretrained(self):
model_name = "facebook/flava-full"
model = FlavaModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class FlavaForPreTrainingTester(FlavaModelTester):
model_class = FlavaForPreTraining
def prepare_config_and_inputs_for_common(self):
_, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs()
_, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
input_ids_masked = input_ids.detach().clone()
input_ids_masked[:, 1:3] = 100
mlm_labels = input_ids.detach().clone()
mlm_labels[:, :] = config.ce_ignore_index
mlm_labels[:, 1:3] = input_ids[:, 1:3]
mim_labels = torch.randint(
0, self.image_model_tester.vocab_size, bool_masked_pos.size(), device=bool_masked_pos.device
).long()
mim_labels[bool_masked_pos.ne(True)] = config.ce_ignore_index
itm_labels = torch.ones(mlm_labels.size(0), device=bool_masked_pos.device).long()
return config, {
"input_ids": input_ids,
"input_ids_masked": input_ids_masked,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"bool_masked_pos": bool_masked_pos,
"mlm_labels": mlm_labels,
"mim_labels": mim_labels,
"itm_labels": itm_labels,
"return_loss": True,
}
def _test_model(self, config, inputs, test_image=False, test_text=False):
model = self.model_class(config).to(torch_device).eval()
with torch.no_grad():
result = model(
input_ids=inputs["input_ids"] if test_text else None,
input_ids_masked=inputs["input_ids_masked"] if test_text else None,
attention_mask=inputs["attention_mask"] if test_text else None,
token_type_ids=inputs["token_type_ids"] if test_text else None,
pixel_values=inputs["pixel_values"] if test_image else None,
bool_masked_pos=inputs["bool_masked_pos"] if test_image else None,
mlm_labels=inputs["mlm_labels"],
mim_labels=inputs["mim_labels"],
itm_labels=inputs["itm_labels"],
return_loss=inputs["return_loss"],
)
image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size)
patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
if test_image:
self.parent.assertEqual(
result.image_embeddings.shape,
(self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size),
)
if not test_text:
self.parent.assertEqual(
result.loss_info.mim.dim(),
0,
)
self.parent.assertEqual(
result.mim_logits.shape,
(inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size),
)
else:
self.parent.assertIsNone(result.image_embeddings)
if test_text:
self.parent.assertEqual(
result.text_embeddings.shape,
(
self.text_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.hidden_size,
),
)
if not test_image:
self.parent.assertEqual(result.loss_info.mlm.dim(), 0)
self.parent.assertEqual(
result.mlm_logits.shape,
(
(inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(),
self.text_model_tester.vocab_size,
),
)
else:
self.parent.assertIsNone(result.text_embeddings)
if test_image and test_text:
self.parent.assertEqual(
result.multimodal_masked_embeddings.shape,
(
self.multimodal_model_tester.batch_size,
self.text_model_tester.seq_length + num_patches + 2,
self.multimodal_model_tester.hidden_size,
),
)
self.parent.assertEqual(
result.itm_logits.shape,
(self.text_model_tester.batch_size, 2),
)
self.parent.assertEqual(
result.mmm_text_logits.shape,
(
(inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(),
self.text_model_tester.vocab_size,
),
)
self.parent.assertEqual(
result.mmm_image_logits.shape,
(inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size),
)
self.parent.assertEqual(
result.contrastive_logits_per_image.shape,
(self.image_model_tester.batch_size, self.text_model_tester.batch_size),
)
self.parent.assertEqual(
result.contrastive_logits_per_text.shape,
(self.text_model_tester.batch_size, self.image_model_tester.batch_size),
)
for item in [
result.loss_info.global_contrastive,
result.loss_info.itm,
result.loss_info.mmm_text,
result.loss_info.mmm_image,
]:
self.parent.assertEqual(item.dim(), 0)
for item in [result.loss_info.mim, result.loss_info.mlm]:
self.parent.assertIsNone(item)
else:
self.parent.assertIsNone(result.multimodal_masked_embeddings)
for item in [
result.loss_info.global_contrastive,
result.loss_info.itm,
result.loss_info.mmm_text,
result.loss_info.mmm_image,
]:
self.parent.assertIsNone(item)
self.parent.assertIsNone(result.multimodal_embeddings)
@require_torch
class FlavaForPreTrainingTest(FlavaModelTest):
all_model_classes = (FlavaForPreTraining,) if is_torch_available() else ()
class_for_tester = FlavaForPreTrainingTester
test_torchscript = False
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class FlavaModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "facebook/flava-full"
model = FlavaModel.from_pretrained(model_name).to(torch_device)
processor = FlavaProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
padding="max_length",
max_length=77,
return_tensors="pt",
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs, return_dict=True)
# verify the embeddings
self.assertAlmostEqual(outputs.image_embeddings.sum().item(), -1352.53540, places=4)
self.assertAlmostEqual(outputs.text_embeddings.sum().item(), -198.98225, places=4)
self.assertAlmostEqual(outputs.multimodal_embeddings.sum().item(), -4030.4602050, places=4)
@require_vision
@require_torch
class FlavaForPreTrainingIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "facebook/flava-full"
model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device)
processor = FlavaProcessor.from_pretrained(model_name)
torch.manual_seed(1)
random.seed(1)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
padding="max_length",
max_length=77,
return_tensors="pt",
return_codebook_pixels=True,
return_image_mask=True,
)
# Create a clone of the input_ids tensor that will be its masked version
inputs["input_ids_masked"] = inputs["input_ids"].clone()
# Mask the tokens "a" & "cat" from the "a photo of a cat" text using the special 103 value
inputs["input_ids_masked"][0, 4:6] = 103
# MLM labels. It is a cloned version of input_ids where all values are -100 (i.e., ignored)
# except those that are masked, whose original values are stored
inputs["mlm_labels"] = inputs["input_ids"].clone()
inputs["mlm_labels"][:, :] = -100
inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6]
inputs = inputs.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.contrastive_logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.contrastive_logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device)
self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3))
self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 2.0727925, places=4)
self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 7.0282096, places=4)
self.assertAlmostEqual(outputs.loss.item(), 11.3792324, places=4)
@slow
def test_inference_with_itm_labels(self):
model_name = "facebook/flava-full"
model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device)
processor = FlavaProcessor.from_pretrained(model_name)
torch.manual_seed(1)
random.seed(1)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[image, image],
padding="max_length",
max_length=77,
return_tensors="pt",
return_codebook_pixels=True,
return_image_mask=True,
)
# Create a clone of the input_ids tensor that will be its masked version
inputs["input_ids_masked"] = inputs["input_ids"].clone()
# Mask the tokens "a" & "cat" from the "a photo of a cat" text using the special 103 value
inputs["input_ids_masked"][0, 4:6] = 103
# MLM labels. It is a cloned version of input_ids where all values are -100 (i.e., ignored)
# except those that are masked, whose original values are stored
inputs["mlm_labels"] = inputs["input_ids"].clone()
inputs["mlm_labels"][:, :] = -100
inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6]
# Manually create the itm_labels tensor that indicates if the image-text match.
# In this case, the firs pair matches and the second does not
inputs["itm_labels"] = torch.tensor([1, 0])
inputs = inputs.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.contrastive_logits_per_image.shape,
torch.Size((torch.count_nonzero(inputs["itm_labels"]).item(), inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.contrastive_logits_per_text.shape,
torch.Size((torch.count_nonzero(inputs["itm_labels"]).item(), inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device)
self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3))
self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 2.0727925, places=4)
self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 6.8965902, places=4)
self.assertAlmostEqual(outputs.loss.item(), 9.6084213, places=4)