386 lines
16 KiB
Python
386 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
import PIL
|
|
|
|
from transformers import FlavaImageProcessor
|
|
from transformers.image_utils import PILImageResampling
|
|
from transformers.models.flava.image_processing_flava import (
|
|
FLAVA_CODEBOOK_MEAN,
|
|
FLAVA_CODEBOOK_STD,
|
|
FLAVA_IMAGE_MEAN,
|
|
FLAVA_IMAGE_STD,
|
|
)
|
|
else:
|
|
FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None
|
|
|
|
|
|
class FlavaImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
do_center_crop=True,
|
|
crop_size=None,
|
|
resample=None,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_normalize=True,
|
|
image_mean=FLAVA_IMAGE_MEAN,
|
|
image_std=FLAVA_IMAGE_STD,
|
|
input_size_patches=14,
|
|
total_mask_patches=75,
|
|
mask_group_max_patches=None,
|
|
mask_group_min_patches=16,
|
|
mask_group_min_aspect_ratio=0.3,
|
|
mask_group_max_aspect_ratio=None,
|
|
codebook_do_resize=True,
|
|
codebook_size=None,
|
|
codebook_resample=None,
|
|
codebook_do_center_crop=True,
|
|
codebook_crop_size=None,
|
|
codebook_do_map_pixels=True,
|
|
codebook_do_normalize=True,
|
|
codebook_image_mean=FLAVA_CODEBOOK_MEAN,
|
|
codebook_image_std=FLAVA_CODEBOOK_STD,
|
|
):
|
|
size = size if size is not None else {"height": 224, "width": 224}
|
|
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
|
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
|
|
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
|
|
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.do_resize = do_resize
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.size = size
|
|
self.resample = resample if resample is not None else PILImageResampling.BICUBIC
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_center_crop = do_center_crop
|
|
self.crop_size = crop_size
|
|
|
|
self.input_size_patches = input_size_patches
|
|
self.total_mask_patches = total_mask_patches
|
|
self.mask_group_max_patches = mask_group_max_patches
|
|
self.mask_group_min_patches = mask_group_min_patches
|
|
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
|
|
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
|
|
|
|
self.codebook_do_resize = codebook_do_resize
|
|
self.codebook_size = codebook_size
|
|
self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
|
|
self.codebook_do_center_crop = codebook_do_center_crop
|
|
self.codebook_crop_size = codebook_crop_size
|
|
self.codebook_do_map_pixels = codebook_do_map_pixels
|
|
self.codebook_do_normalize = codebook_do_normalize
|
|
self.codebook_image_mean = codebook_image_mean
|
|
self.codebook_image_std = codebook_image_std
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"resample": self.resample,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_center_crop": self.do_center_crop,
|
|
"crop_size": self.crop_size,
|
|
"input_size_patches": self.input_size_patches,
|
|
"total_mask_patches": self.total_mask_patches,
|
|
"mask_group_max_patches": self.mask_group_max_patches,
|
|
"mask_group_min_patches": self.mask_group_min_patches,
|
|
"mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
|
|
"mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
|
|
"codebook_do_resize": self.codebook_do_resize,
|
|
"codebook_size": self.codebook_size,
|
|
"codebook_resample": self.codebook_resample,
|
|
"codebook_do_center_crop": self.codebook_do_center_crop,
|
|
"codebook_crop_size": self.codebook_crop_size,
|
|
"codebook_do_map_pixels": self.codebook_do_map_pixels,
|
|
"codebook_do_normalize": self.codebook_do_normalize,
|
|
"codebook_image_mean": self.codebook_image_mean,
|
|
"codebook_image_std": self.codebook_image_std,
|
|
}
|
|
|
|
def get_expected_image_size(self):
|
|
return (self.size["height"], self.size["width"])
|
|
|
|
def get_expected_mask_size(self):
|
|
return (
|
|
(self.input_size_patches, self.input_size_patches)
|
|
if not isinstance(self.input_size_patches, tuple)
|
|
else self.input_size_patches
|
|
)
|
|
|
|
def get_expected_codebook_image_size(self):
|
|
return (self.codebook_size["height"], self.codebook_size["width"])
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = FlavaImageProcessor if is_vision_available() else None
|
|
maxDiff = None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = FlavaImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "resample"))
|
|
self.assertTrue(hasattr(image_processing, "crop_size"))
|
|
self.assertTrue(hasattr(image_processing, "do_center_crop"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "masking_generator"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_size"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_resample"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "codebook_image_std"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 224, "width": 224})
|
|
self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
|
|
self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
|
|
self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})
|
|
|
|
image_processor = self.image_processing_class.from_dict(
|
|
self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
|
|
)
|
|
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
|
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
|
self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
|
|
self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, PIL.Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt")
|
|
|
|
# Test no bool masked pos
|
|
self.assertFalse("bool_masked_pos" in encoded_images)
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
|
|
|
|
self.assertEqual(
|
|
encoded_images.pixel_values.shape,
|
|
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt")
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
|
|
|
|
# Test no bool masked pos
|
|
self.assertFalse("bool_masked_pos" in encoded_images)
|
|
|
|
self.assertEqual(
|
|
encoded_images.pixel_values.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
def _test_call_framework(self, instance_class, prepare_kwargs):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, instance_class)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt")
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
|
|
self.assertEqual(
|
|
encoded_images.pixel_values.shape,
|
|
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
|
)
|
|
|
|
encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
|
|
self.assertEqual(
|
|
encoded_images.pixel_values.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
|
|
self.assertEqual(
|
|
encoded_images.bool_masked_pos.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
# Test masking
|
|
encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
|
|
self.assertEqual(
|
|
encoded_images.pixel_values.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
|
|
self.assertEqual(
|
|
encoded_images.bool_masked_pos.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
self.image_processing_class.num_channels = 4
|
|
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
|
|
self.image_processing_class.num_channels = 3
|
|
|
|
def test_call_pytorch(self):
|
|
self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})
|
|
|
|
def test_masking(self):
|
|
# Initialize image_processing
|
|
random.seed(1234)
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
|
|
self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)
|
|
|
|
def test_codebook_pixels(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, PIL.Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
|
|
self.assertEqual(
|
|
encoded_images.codebook_pixel_values.shape,
|
|
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
|
|
self.assertEqual(
|
|
encoded_images.codebook_pixel_values.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|