transformers/tests/models/depth_anything/test_modeling_depth_anythin...

243 lines
9.3 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Depth Anything model. """
import unittest
from transformers import DepthAnythingConfig, Dinov2Config
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DepthAnythingForDepthEstimation
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class DepthAnythingModelTester:
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.__init__
def __init__(
self,
parent,
batch_size=2,
num_channels=3,
image_size=32,
patch_size=16,
use_labels=True,
num_labels=3,
is_training=True,
hidden_size=4,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=8,
out_features=["stage1", "stage2"],
apply_layernorm=False,
reshape_hidden_states=False,
neck_hidden_sizes=[2, 2],
fusion_hidden_size=6,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.out_features = out_features
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
self.use_labels = use_labels
self.num_labels = num_labels
self.is_training = is_training
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
# DPT's sequence length
self.seq_length = (self.image_size // self.patch_size) ** 2 + 1
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DepthAnythingConfig(
backbone_config=self.get_backbone_config(),
reassemble_hidden_size=self.hidden_size,
patch_size=self.patch_size,
neck_hidden_sizes=self.neck_hidden_sizes,
fusion_hidden_size=self.fusion_hidden_size,
)
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.get_backbone_config
def get_backbone_config(self):
return Dinov2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
is_training=self.is_training,
out_features=self.out_features,
reshape_hidden_states=self.reshape_hidden_states,
)
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.create_and_check_for_depth_estimation with DPT->DepthAnything
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = DepthAnythingForDepthEstimation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.prepare_config_and_inputs_for_common
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DepthAnythingModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Depth Anything does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (DepthAnythingForDepthEstimation,) if is_torch_available() else ()
pipeline_model_mapping = {"depth-estimation": DepthAnythingForDepthEstimation} if is_torch_available() else {}
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DepthAnythingModelTester(self)
self.config_tester = ConfigTester(
self, config_class=DepthAnythingConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model and hence no input_embeddings")
def test_inputs_embeds(self):
pass
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
@unittest.skip(reason="Depth Anything does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="Depth Anything does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model and hence no input_embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "LiheYoung/depth-anything-small-hf"
model = DepthAnythingForDepthEstimation.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class DepthAnythingModelIntegrationTest(unittest.TestCase):
def test_inference(self):
image_processor = DPTImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf")
model = DepthAnythingForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size([1, 518, 686])
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[8.8204, 8.6468, 8.6195], [8.3313, 8.6027, 8.7526], [8.6526, 8.6866, 8.7453]],
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-6))