transformers/tests/models/clvp/test_modeling_clvp.py

636 lines
26 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Clvp model. """
import gc
import tempfile
import unittest
import datasets
import numpy as np
from transformers import ClvpConfig, ClvpDecoderConfig, ClvpEncoderConfig
from transformers.testing_utils import (
require_torch,
slow,
torch_device,
)
from transformers.utils import is_torch_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ClvpEncoder, ClvpForCausalLM, ClvpModel, ClvpModelForConditionalGeneration
from transformers import ClvpFeatureExtractor, ClvpTokenizer
class ClvpEncoderTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=7,
is_training=False,
use_input_mask=True,
use_labels=True,
vocab_size=50,
hidden_size=128,
projection_dim=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=32,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
def get_config(self):
encoder_config = ClvpEncoderConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
return encoder_config
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
encoder_config = self.get_config()
return encoder_config, input_ids, input_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
speech_config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids.to(torch_device), "attention_mask": input_mask.to(torch_device)}
return speech_config, inputs_dict
def create_and_check_model(self, speech_config, input_ids, input_mask):
text_config = ClvpEncoderConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
text_encoder_model = ClvpEncoder(config=text_config)
text_encoder_model.to(torch_device)
text_encoder_model.eval()
with torch.no_grad():
result = text_encoder_model(input_ids, attention_mask=input_mask)
result = text_encoder_model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result[0].shape, (self.batch_size, self.projection_dim))
# now check with speech config
speech_encoder_model = ClvpEncoder(config=speech_config)
speech_encoder_model.to(torch_device)
speech_encoder_model.eval()
with torch.no_grad():
result = speech_encoder_model(input_ids, attention_mask=input_mask)
result = speech_encoder_model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result[0].shape, (self.batch_size, self.projection_dim))
@require_torch
class ClvpEncoderTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ClvpEncoder,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_torchscript = False
def setUp(self):
self.model_tester = ClvpEncoderTester(self)
self.encoder_config_tester = ConfigTester(self, config_class=ClvpEncoderConfig, hidden_size=32)
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def test_config(self):
self.encoder_config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="ClvpEncoder does not output loss")
def test_training(self):
pass
@unittest.skip(reason="ClvpEncoder does not output loss")
def test_training_gradient_checkpointing(self):
pass
class ClvpDecoderTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=3,
is_training=False,
vocab_size=300,
max_position_embeddings=256,
max_text_tokens=256,
use_input_mask=True,
hidden_size=128,
num_hidden_layers=2,
num_attention_heads=2,
bos_token_id=97,
eos_token_id=98,
relative_attention_num_buckets=4,
relative_attention_max_distance=16,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.max_text_tokens = max_text_tokens
self.use_input_mask = use_input_mask
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
def get_config(self):
decoder_config = ClvpDecoderConfig(
vocab_size=self.vocab_size,
max_position_embeddings=self.max_position_embeddings,
max_text_tokens=self.max_text_tokens,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
relative_attention_num_buckets=self.relative_attention_num_buckets,
relative_attention_max_distance=self.relative_attention_max_distance,
)
return decoder_config
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
decoder_config = self.get_config()
return decoder_config, input_ids, input_mask
def create_and_check_model(self, config, input_ids, attention_mask):
model = ClvpForCausalLM(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids=input_ids, attention_mask=attention_mask)
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.vocab_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {
"input_ids": input_ids.to(torch_device),
"attention_mask": attention_mask.to(torch_device),
}
return config, inputs_dict
@require_torch
class ClvpDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ClvpModel, ClvpForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (ClvpForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": ClvpModelForConditionalGeneration} if is_torch_available() else {}
test_pruning = False
def setUp(self):
self.model_tester = ClvpDecoderTester(self)
self.decoder_config_tester = ConfigTester(self, config_class=ClvpDecoderConfig, hidden_size=32)
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
if return_labels and model_class == ClvpForCausalLM:
inputs_dict["labels"] = torch.zeros(
[self.model_tester.batch_size, self.model_tester.seq_length], device=torch_device
).long()
return inputs_dict
def test_training(self):
# we will only test the ClvpForCausalLM since it outputs loss
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
model = ClvpForCausalLM(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, ClvpForCausalLM, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
# we will only test the ClvpForCausalLM since it outputs loss
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = ClvpForCausalLM(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, ClvpForCausalLM, return_labels=True)
loss = model(**inputs).loss
loss.backward()
class ClvpModelForConditionalGenerationTester:
def __init__(self, parent, is_training=False):
self.parent = parent
self.clvp_encoder_tester = ClvpEncoderTester(parent)
self.is_training = is_training
self.batch_size = self.clvp_encoder_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
decoder_config = ClvpDecoderConfig(
vocab_size=50,
max_position_embeddings=30,
max_text_tokens=30,
hidden_size=128,
num_hidden_layers=1,
num_attention_heads=2,
bos_token_id=97,
eos_token_id=98,
relative_attention_num_buckets=4,
relative_attention_max_distance=16,
)
text_config = self.clvp_encoder_tester.get_config()
speech_config = self.clvp_encoder_tester.get_config()
speech_config.vocab_size = 300
return ClvpConfig.from_sub_model_configs(
text_config,
speech_config,
decoder_config,
projection_dim=16,
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.clvp_encoder_tester.prepare_config_and_inputs()
ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
_, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
feature_extractor = ClvpFeatureExtractor()
input_features = feature_extractor(raw_speech=audio, sampling_rate=sr, return_tensors="pt")[
"input_features"
].to(torch_device)
config = self.get_config()
return config, input_ids, attention_mask, input_features
def create_and_check_model(self, config, input_ids, attention_mask, input_features):
model = ClvpModelForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids=input_ids, input_features=input_features, attention_mask=attention_mask)
self.parent.assertEqual(result.logits_per_speech.shape, (2, self.clvp_encoder_tester.batch_size))
self.parent.assertEqual(result.logits_per_text.shape, (self.clvp_encoder_tester.batch_size, 2))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, input_features = config_and_inputs
inputs_dict = {
"input_ids": input_ids.to(torch_device),
"attention_mask": attention_mask.to(torch_device),
"input_features": input_features.to(torch_device),
"return_loss": False,
}
return config, inputs_dict
@require_torch
class ClvpModelForConditionalGenerationTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ClvpModelForConditionalGeneration,) if is_torch_available() else ()
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = ClvpModelForConditionalGenerationTester(self)
self.clvp_config_tester = ConfigTester(self, config_class=ClvpConfig, hidden_size=32)
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# check for decoder model, text encoder model and speech encoder model hidden states
decoder_hidden_states = outputs.decoder_hidden_states
text_encoder_hidden_states = outputs.text_encoder_hidden_states
speech_encoder_hidden_states = outputs.speech_encoder_hidden_states
# check length of the hidden states
expected_decoder_num_layers = config.decoder_config.num_hidden_layers + 1
self.assertEqual(len(decoder_hidden_states), expected_decoder_num_layers)
expected_speech_encoder_num_layers = config.text_config.num_hidden_layers + 1
self.assertEqual(len(text_encoder_hidden_states), expected_speech_encoder_num_layers)
expected_text_encoder_num_layers = config.speech_config.num_hidden_layers + 1
self.assertEqual(len(speech_encoder_hidden_states), expected_text_encoder_num_layers)
# check shapes of each hidden state
# for the decoder model we will only test the dimension because the ClvpConditioningEncoder could increase
# the sequence lengths.
self.assertEqual(decoder_hidden_states[0].shape[-1], config.decoder_config.hidden_size)
# the testing for text encoder stays standard because we just pass the text tokens here.
self.assertListEqual(
list(text_encoder_hidden_states[0].shape[-2:]),
[self.model_tester.clvp_encoder_tester.seq_length, config.text_config.hidden_size],
)
# for the decoder model we will only test the dimension because the fix_decoder_outputs method could increase
# the sequence lengths by adding `decoder_fixing_codes` tokens at the end.
self.assertEqual(speech_encoder_hidden_states[0].shape[-1], config.speech_config.hidden_size)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="ClvpModelForConditionalGeneration does not have get_input_embeddings")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="ClvpModelForConditionalGeneration does not have get_input_embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for Clvp
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
expected_value = np.log(1 / 0.07)
returned_value = param.data.item()
self.assertAlmostEqual(
returned_value,
expected_value,
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
expected_range = [0.0, 1.0]
returned_range = ((param.data.mean() * 1e9).round() / 1e9).item()
self.assertIn(
returned_range,
expected_range,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_load_speech_text_decoder_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save ClvpConfig and check if we can load ClvpEncoderConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
encoder_config = ClvpEncoderConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), encoder_config.to_dict())
# Save ClvpConfig and check if we can load ClvpDecoderConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
decoder_config = ClvpDecoderConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.decoder_config.to_dict(), decoder_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "susnato/clvp_dev"
model = ClvpModelForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# Since Clvp has a lot of different models connected with each other it's better to test each of them individually along
# with a test_full_model_integration. If the model breaks in future, it could be of a great help to identify the broken part.
@slow
@require_torch
class ClvpIntegrationTest(unittest.TestCase):
def setUp(self):
self.text = "This is an example text."
ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
_, self.speech_samples, self.sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
self.model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev").to(torch_device)
self.model.eval()
tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
feature_extractor = ClvpFeatureExtractor.from_pretrained("susnato/clvp_dev")
tokenizer_output = tokenizer(self.text, return_tensors="pt")
self.text_tokens = tokenizer_output["input_ids"].to(torch_device)
self.input_features = feature_extractor(
raw_speech=self.speech_samples, sampling_rate=self.sr, return_tensors="pt"
)["input_features"].to(torch_device)
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def test_conditional_encoder(self):
with torch.no_grad():
conditioning_encoder_outputs = self.model.conditioning_encoder(
input_features=self.input_features, input_ids=self.text_tokens
).to("cpu")
self.assertEqual(
conditioning_encoder_outputs.shape,
torch.Size((self.input_features.shape[0], 18, self.model.config.decoder_config.hidden_size)),
)
EXPECTED_OUTPUTS = torch.tensor(
[[-0.8582, 0.5228, 1.9944], [-0.0465, -1.1017, -0.0093], [-0.0466, -0.6030, -0.1280]]
)
self.assertTrue(torch.allclose(conditioning_encoder_outputs[0, :3, :3], EXPECTED_OUTPUTS, atol=1e-4))
def test_decoder_model_generate(self):
autoregressive_model_output = self.model.speech_decoder_model.generate(input_ids=self.text_tokens).cpu()
EXPECTED_OUTPUTS = torch.tensor([[147, 2, 54, 2, 43, 2, 169, 122, 29, 64, 2, 136, 37, 33, 9, 8193]])
self.assertTrue(torch.allclose(autoregressive_model_output, EXPECTED_OUTPUTS))
def test_text_and_speech_encoder_models(self):
# check for text embeds
text_embeds = self.model.text_encoder_model(input_ids=self.text_tokens, return_dict=True)[0].cpu()
# fmt: off
EXPECTED_TEXT_EMBEDS = torch.tensor([1.4798, -2.0005, 2.3902, -0.5042, 1.6401, -2.4135, -1.4800, 3.0118, -2.4422, 1.3266, 2.2339, 1.4761, -4.8983, -1.3592, 6.0251, 6.7364, 2.2576, 3.7229, -10.0436, 4.6676])
# fmt: on
self.assertTrue(torch.allclose(text_embeds[0, :20], EXPECTED_TEXT_EMBEDS, atol=1e-4))
# check for speech embeds
speech_embeds = self.model.speech_encoder_model(input_ids=self.text_tokens, return_dict=True)[0].cpu()
# fmt: off
EXPECTED_SPEECH_EMBEDS = torch.tensor([3.1202, -3.1183, -1.4264, -6.1339, 1.8885, -0.1983, 0.9461, -1.7414, 0.3320, -3.8400, -1.5715, 1.5096, -1.7576, 0.2387, 4.9758, 5.8450, -6.2534, 2.8587, -5.5816, 4.7821])
# fmt: on
self.assertTrue(torch.allclose(speech_embeds[0, :20], EXPECTED_SPEECH_EMBEDS, atol=1e-4))
def test_full_model_integration(self):
full_model_output = self.model.generate(
input_ids=self.text_tokens,
input_features=self.input_features,
do_sample=False,
num_beams=4,
num_return_sequences=4,
max_new_tokens=10,
)
EXPECTED_SPEECH_IDS = torch.tensor([[1953, 1080, 612], [1953, 612, 493], [1953, 612, 716]])
EXPECTED_SIMILARITY_SCORES = torch.tensor([[14.7660, 14.4569, 13.6472, 13.5683]])
self.assertTrue(torch.allclose(full_model_output.speech_ids.cpu()[-3:, -3:], EXPECTED_SPEECH_IDS))
self.assertTrue(torch.allclose(full_model_output.logits_per_text.cpu(), EXPECTED_SIMILARITY_SCORES))