295 lines
11 KiB
Python
295 lines
11 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import BeitConfig
|
|
from transformers.testing_utils import require_flax, require_vision, slow
|
|
from transformers.utils import cached_property, is_flax_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_flax_available():
|
|
import jax
|
|
|
|
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import BeitImageProcessor
|
|
|
|
|
|
class FlaxBeitModelTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
vocab_size=100,
|
|
batch_size=13,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
):
|
|
self.parent = parent
|
|
self.vocab_size = vocab_size
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
|
|
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = BeitConfig(
|
|
vocab_size=self.vocab_size,
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = FlaxBeitModel(config=config)
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_masked_lm(self, config, pixel_values, labels):
|
|
model = FlaxBeitForMaskedImageModeling(config=config)
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
|
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
|
config.num_labels = self.type_sequence_label_size
|
|
model = FlaxBeitForImageClassification(config=config)
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
# test greyscale images
|
|
config.num_channels = 1
|
|
model = FlaxBeitForImageClassification(config)
|
|
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
|
|
result = model(pixel_values)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
pixel_values,
|
|
labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_flax
|
|
class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
|
|
)
|
|
|
|
def setUp(self) -> None:
|
|
self.model_tester = FlaxBeitModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# We need to override this test because Beit's forward signature is different than text models.
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.__call__)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
# We need to override this test because Beit expects pixel_values instead of input_ids
|
|
def test_jit_compilation(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
with self.subTest(model_class.__name__):
|
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config)
|
|
|
|
@jax.jit
|
|
def model_jitted(pixel_values, **kwargs):
|
|
return model(pixel_values=pixel_values, **kwargs)
|
|
|
|
with self.subTest("JIT Enabled"):
|
|
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
|
|
|
|
with self.subTest("JIT Disabled"):
|
|
with jax.disable_jit():
|
|
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
|
|
|
|
self.assertEqual(len(outputs), len(jitted_outputs))
|
|
for jitted_output, output in zip(jitted_outputs, outputs):
|
|
self.assertEqual(jitted_output.shape, output.shape)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_image_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_class_name in self.all_model_classes:
|
|
model = model_class_name.from_pretrained("microsoft/beit-base-patch16-224")
|
|
outputs = model(np.ones((1, 3, 224, 224)))
|
|
self.assertIsNotNone(outputs)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_vision
|
|
@require_flax
|
|
class FlaxBeitModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
|
|
|
|
@slow
|
|
def test_inference_masked_image_modeling_head(self):
|
|
model = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
pixel_values = image_processor(images=image, return_tensors="np").pixel_values
|
|
|
|
# prepare bool_masked_pos
|
|
bool_masked_pos = np.ones((1, 196), dtype=bool)
|
|
|
|
# forward pass
|
|
outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
|
|
logits = outputs.logits
|
|
|
|
# verify the logits
|
|
expected_shape = (1, 196, 8192)
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_slice = np.array(
|
|
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
|
|
)
|
|
|
|
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))
|
|
|
|
@slow
|
|
def test_inference_image_classification_head_imagenet_1k(self):
|
|
model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="np")
|
|
|
|
# forward pass
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
|
|
# verify the logits
|
|
expected_shape = (1, 1000)
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_slice = np.array([-1.2385, -1.0987, -1.0108])
|
|
|
|
self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))
|
|
|
|
expected_class_idx = 281
|
|
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
|
|
|
|
@slow
|
|
def test_inference_image_classification_head_imagenet_22k(self):
|
|
model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k")
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="np")
|
|
|
|
# forward pass
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
|
|
# verify the logits
|
|
expected_shape = (1, 21841)
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_slice = np.array([1.6881, -0.2787, 0.5901])
|
|
|
|
self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))
|
|
|
|
expected_class_idx = 2396
|
|
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
|