transformers/tests/models/bark/test_processor_bark.py

128 lines
4.5 KiB
Python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class BarkProcessorTest(unittest.TestCase):
def setUp(self):
self.checkpoint = "suno/bark-small"
self.tmpdirname = tempfile.mkdtemp()
self.voice_preset = "en_speaker_1"
self.input_string = "This is a test string"
self.speaker_embeddings_dict_path = "speaker_embeddings_path.json"
self.speaker_embeddings_directory = "speaker_embeddings"
def get_tokenizer(self, **kwargs):
return AutoTokenizer.from_pretrained(self.checkpoint, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
processor = BarkProcessor(tokenizer=tokenizer)
processor.save_pretrained(self.tmpdirname)
processor = BarkProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
@slow
def test_save_load_pretrained_additional_features(self):
processor = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint,
speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,
)
processor.save_pretrained(
self.tmpdirname,
speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,
speaker_embeddings_directory=self.speaker_embeddings_directory,
)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
processor = BarkProcessor.from_pretrained(
self.tmpdirname,
self.speaker_embeddings_dict_path,
bos_token="(BOS)",
eos_token="(EOS)",
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
def test_speaker_embeddings(self):
processor = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint,
speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,
)
seq_len = 35
nb_codebooks_coarse = 2
nb_codebooks_total = 8
voice_preset = {
"semantic_prompt": np.ones(seq_len),
"coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)),
"fine_prompt": np.ones((nb_codebooks_total, seq_len)),
}
# test providing already loaded voice_preset
inputs = processor(text=self.input_string, voice_preset=voice_preset)
processed_voice_preset = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist())
# test loading voice preset from npz file
tmpfilename = os.path.join(self.tmpdirname, "file.npz")
np.savez(tmpfilename, **voice_preset)
inputs = processor(text=self.input_string, voice_preset=tmpfilename)
processed_voice_preset = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist())
# test loading voice preset from the hub
inputs = processor(text=self.input_string, voice_preset=self.voice_preset)
def test_tokenizer(self):
tokenizer = self.get_tokenizer()
processor = BarkProcessor(tokenizer=tokenizer)
encoded_processor = processor(text=self.input_string)
encoded_tok = tokenizer(
self.input_string,
padding="max_length",
max_length=256,
add_special_tokens=False,
return_attention_mask=True,
return_token_type_ids=False,
)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key].squeeze().tolist())