501 lines
23 KiB
Python
501 lines
23 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
BertConfig,
|
|
BertTokenizer,
|
|
BertTokenizerFast,
|
|
CTRLTokenizer,
|
|
GPT2Tokenizer,
|
|
GPT2TokenizerFast,
|
|
PreTrainedTokenizerFast,
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
is_tokenizers_available,
|
|
)
|
|
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
|
|
from transformers.models.auto.tokenization_auto import (
|
|
TOKENIZER_MAPPING,
|
|
get_tokenizer_config,
|
|
tokenizer_class_from_name,
|
|
)
|
|
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
|
from transformers.testing_utils import (
|
|
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
|
|
DUMMY_UNKNOWN_IDENTIFIER,
|
|
SMALL_MODEL_IDENTIFIER,
|
|
RequestCounter,
|
|
require_tokenizers,
|
|
slow,
|
|
)
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
|
|
|
|
from test_module.custom_configuration import CustomConfig # noqa E402
|
|
from test_module.custom_tokenization import CustomTokenizer # noqa E402
|
|
|
|
|
|
if is_tokenizers_available():
|
|
from test_module.custom_tokenization_fast import CustomTokenizerFast
|
|
|
|
|
|
class AutoTokenizerTest(unittest.TestCase):
|
|
def setUp(self):
|
|
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
|
|
|
|
@slow
|
|
def test_tokenizer_from_pretrained(self):
|
|
for model_name in {"google-bert/bert-base-uncased", "google-bert/bert-base-cased"}:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
for model_name in ["openai-community/gpt2", "openai-community/gpt2-medium"]:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
def test_tokenizer_from_pretrained_identifier(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
def test_tokenizer_from_model_type(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 20)
|
|
|
|
def test_tokenizer_from_tokenizer_class(self):
|
|
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
|
|
self.assertIsInstance(config, RobertaConfig)
|
|
# Check that tokenizer_type ≠ model_type
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
def test_tokenizer_from_type(self):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False)
|
|
self.assertIsInstance(tokenizer, BertTokenizer)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
|
|
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False)
|
|
self.assertIsInstance(tokenizer, GPT2Tokenizer)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_from_type_fast(self):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert")
|
|
self.assertIsInstance(tokenizer, BertTokenizerFast)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
|
|
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2")
|
|
self.assertIsInstance(tokenizer, GPT2TokenizerFast)
|
|
|
|
def test_tokenizer_from_type_incorrect_name(self):
|
|
with pytest.raises(ValueError):
|
|
AutoTokenizer.from_pretrained("./", tokenizer_type="xxx")
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_with_correct_config(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
|
|
if isinstance(tokenizer, BertTokenizer):
|
|
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
|
|
else:
|
|
self.assertEqual(tokenizer.do_lower_case, False)
|
|
|
|
self.assertEqual(tokenizer.model_max_length, 512)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_non_existent(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError,
|
|
"julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier",
|
|
):
|
|
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
|
|
|
|
def test_model_name_edge_cases_in_mappings(self):
|
|
# tests: https://github.com/huggingface/transformers/pull/13251
|
|
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
|
|
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
|
|
tokenizers = TOKENIZER_MAPPING.values()
|
|
tokenizer_names = []
|
|
|
|
for slow_tok, fast_tok in tokenizers:
|
|
if slow_tok is not None:
|
|
tokenizer_names.append(slow_tok.__name__)
|
|
|
|
if fast_tok is not None:
|
|
tokenizer_names.append(fast_tok.__name__)
|
|
|
|
for tokenizer_name in tokenizer_names:
|
|
# must find the right class
|
|
tokenizer_class_from_name(tokenizer_name)
|
|
|
|
@require_tokenizers
|
|
def test_from_pretrained_use_fast_toggle(self):
|
|
self.assertIsInstance(
|
|
AutoTokenizer.from_pretrained("google-bert/bert-base-cased", use_fast=False), BertTokenizer
|
|
)
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("google-bert/bert-base-cased"), BertTokenizerFast)
|
|
|
|
@require_tokenizers
|
|
def test_do_lower_case(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased", do_lower_case=False)
|
|
sample = "Hello, world. How are you?"
|
|
tokens = tokenizer.tokenize(sample)
|
|
self.assertEqual("[UNK]", tokens[0])
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False)
|
|
tokens = tokenizer.tokenize(sample)
|
|
self.assertEqual("[UNK]", tokens[0])
|
|
|
|
@require_tokenizers
|
|
def test_PreTrainedTokenizerFast_from_pretrained(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config")
|
|
self.assertEqual(type(tokenizer), PreTrainedTokenizerFast)
|
|
self.assertEqual(tokenizer.model_max_length, 512)
|
|
self.assertEqual(tokenizer.vocab_size, 30000)
|
|
self.assertEqual(tokenizer.unk_token, "[UNK]")
|
|
self.assertEqual(tokenizer.padding_side, "right")
|
|
self.assertEqual(tokenizer.truncation_side, "right")
|
|
|
|
def test_auto_tokenizer_from_local_folder(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir)
|
|
|
|
self.assertIsInstance(tokenizer2, tokenizer.__class__)
|
|
self.assertEqual(tokenizer2.vocab_size, 12)
|
|
|
|
def test_auto_tokenizer_fast_no_slow(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
|
|
# There is no fast CTRL so this always gives us a slow tokenizer.
|
|
self.assertIsInstance(tokenizer, CTRLTokenizer)
|
|
|
|
def test_get_tokenizer_config(self):
|
|
# Check we can load the tokenizer config of an online model.
|
|
config = get_tokenizer_config("google-bert/bert-base-cased")
|
|
_ = config.pop("_commit_hash", None)
|
|
# If we ever update google-bert/bert-base-cased tokenizer config, this dict here will need to be updated.
|
|
self.assertEqual(config, {"do_lower_case": False, "model_max_length": 512})
|
|
|
|
# This model does not have a tokenizer_config so we get back an empty dict.
|
|
config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER)
|
|
self.assertDictEqual(config, {})
|
|
|
|
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
config = get_tokenizer_config(tmp_dir)
|
|
|
|
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
|
|
self.assertEqual(config["tokenizer_class"], "BertTokenizer")
|
|
|
|
def test_new_tokenizer_registration(self):
|
|
try:
|
|
AutoConfig.register("custom", CustomConfig)
|
|
|
|
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
|
|
# Trying to register something existing in the Transformers library will raise an error
|
|
with self.assertRaises(ValueError):
|
|
AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer)
|
|
|
|
tokenizer = CustomTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(new_tokenizer, CustomTokenizer)
|
|
|
|
finally:
|
|
if "custom" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["custom"]
|
|
if CustomConfig in TOKENIZER_MAPPING._extra_content:
|
|
del TOKENIZER_MAPPING._extra_content[CustomConfig]
|
|
|
|
@require_tokenizers
|
|
def test_new_tokenizer_fast_registration(self):
|
|
try:
|
|
AutoConfig.register("custom", CustomConfig)
|
|
|
|
# Can register in two steps
|
|
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
|
|
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None))
|
|
AutoTokenizer.register(CustomConfig, fast_tokenizer_class=CustomTokenizerFast)
|
|
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast))
|
|
|
|
del TOKENIZER_MAPPING._extra_content[CustomConfig]
|
|
# Can register in one step
|
|
AutoTokenizer.register(
|
|
CustomConfig, slow_tokenizer_class=CustomTokenizer, fast_tokenizer_class=CustomTokenizerFast
|
|
)
|
|
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast))
|
|
|
|
# Trying to register something existing in the Transformers library will raise an error
|
|
with self.assertRaises(ValueError):
|
|
AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast)
|
|
|
|
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
|
|
# and that model does not have a tokenizer.json
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
bert_tokenizer.save_pretrained(tmp_dir)
|
|
tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(new_tokenizer, CustomTokenizerFast)
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False)
|
|
self.assertIsInstance(new_tokenizer, CustomTokenizer)
|
|
|
|
finally:
|
|
if "custom" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["custom"]
|
|
if CustomConfig in TOKENIZER_MAPPING._extra_content:
|
|
del TOKENIZER_MAPPING._extra_content[CustomConfig]
|
|
|
|
def test_from_pretrained_dynamic_tokenizer(self):
|
|
# If remote code is not set, we will time out when asking whether to load the model.
|
|
with self.assertRaises(ValueError):
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer")
|
|
# If remote code is disabled, we can't load this config.
|
|
with self.assertRaises(ValueError):
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True)
|
|
self.assertTrue(tokenizer.special_attribute_present)
|
|
# Test tokenizer can be reloaded.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True)
|
|
self.assertTrue(reloaded_tokenizer.special_attribute_present)
|
|
|
|
if is_tokenizers_available():
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
|
|
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizerFast")
|
|
|
|
# Test we can also load the slow version
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False
|
|
)
|
|
self.assertTrue(tokenizer.special_attribute_present)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
# Test tokenizer can be reloaded.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True, use_fast=False)
|
|
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer")
|
|
self.assertTrue(reloaded_tokenizer.special_attribute_present)
|
|
else:
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer")
|
|
|
|
@require_tokenizers
|
|
def test_from_pretrained_dynamic_tokenizer_conflict(self):
|
|
class NewTokenizer(BertTokenizer):
|
|
special_attribute_present = False
|
|
|
|
class NewTokenizerFast(BertTokenizerFast):
|
|
slow_tokenizer_class = NewTokenizer
|
|
special_attribute_present = False
|
|
|
|
try:
|
|
AutoConfig.register("custom", CustomConfig)
|
|
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
|
|
AutoTokenizer.register(CustomConfig, fast_tokenizer_class=NewTokenizerFast)
|
|
# If remote code is not set, the default is to use local
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer")
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
|
|
self.assertFalse(tokenizer.special_attribute_present)
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", use_fast=False)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
self.assertFalse(tokenizer.special_attribute_present)
|
|
|
|
# If remote code is disabled, we load the local one.
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False
|
|
)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
|
|
self.assertFalse(tokenizer.special_attribute_present)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False, use_fast=False
|
|
)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
self.assertFalse(tokenizer.special_attribute_present)
|
|
|
|
# If remote is enabled, we load from the Hub
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True
|
|
)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
|
|
self.assertTrue(tokenizer.special_attribute_present)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False
|
|
)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
self.assertTrue(tokenizer.special_attribute_present)
|
|
|
|
finally:
|
|
if "custom" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["custom"]
|
|
if CustomConfig in TOKENIZER_MAPPING._extra_content:
|
|
del TOKENIZER_MAPPING._extra_content[CustomConfig]
|
|
|
|
def test_from_pretrained_dynamic_tokenizer_legacy_format(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True
|
|
)
|
|
self.assertTrue(tokenizer.special_attribute_present)
|
|
if is_tokenizers_available():
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
|
|
|
|
# Test we can also load the slow version
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True, use_fast=False
|
|
)
|
|
self.assertTrue(tokenizer.special_attribute_present)
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
else:
|
|
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
|
|
|
|
def test_repo_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
|
|
):
|
|
_ = AutoTokenizer.from_pretrained("bert-base")
|
|
|
|
def test_revision_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
|
|
):
|
|
_ = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
|
|
|
|
def test_cached_tokenizer_has_minimum_calls_to_head(self):
|
|
# Make sure we have cached the tokenizer.
|
|
_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
|
|
with RequestCounter() as counter:
|
|
_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
|
|
self.assertEqual(counter["GET"], 0)
|
|
self.assertEqual(counter["HEAD"], 1)
|
|
self.assertEqual(counter.total_calls, 1)
|
|
|
|
def test_init_tokenizer_with_trust(self):
|
|
nop_tokenizer_code = """
|
|
import transformers
|
|
|
|
class NopTokenizer(transformers.PreTrainedTokenizer):
|
|
def get_vocab(self):
|
|
return {}
|
|
"""
|
|
|
|
nop_config_code = """
|
|
from transformers import PretrainedConfig
|
|
|
|
class NopConfig(PretrainedConfig):
|
|
model_type = "test_unregistered_dynamic"
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
fake_model_id = "hf-internal-testing/test_unregistered_dynamic"
|
|
fake_repo = os.path.join(tmp_dir, fake_model_id)
|
|
os.makedirs(fake_repo)
|
|
|
|
tokenizer_src_file = os.path.join(fake_repo, "tokenizer.py")
|
|
with open(tokenizer_src_file, "w") as wfp:
|
|
wfp.write(nop_tokenizer_code)
|
|
|
|
model_config_src_file = os.path.join(fake_repo, "config.py")
|
|
with open(model_config_src_file, "w") as wfp:
|
|
wfp.write(nop_config_code)
|
|
|
|
config = {
|
|
"model_type": "test_unregistered_dynamic",
|
|
"auto_map": {"AutoConfig": f"{fake_model_id}--config.NopConfig"},
|
|
}
|
|
|
|
config_file = os.path.join(fake_repo, "config.json")
|
|
with open(config_file, "w") as wfp:
|
|
json.dump(config, wfp, indent=2)
|
|
|
|
tokenizer_config = {
|
|
"auto_map": {
|
|
"AutoTokenizer": [
|
|
f"{fake_model_id}--tokenizer.NopTokenizer",
|
|
None,
|
|
]
|
|
}
|
|
}
|
|
|
|
tokenizer_config_file = os.path.join(fake_repo, "tokenizer_config.json")
|
|
with open(tokenizer_config_file, "w") as wfp:
|
|
json.dump(tokenizer_config, wfp, indent=2)
|
|
|
|
prev_dir = os.getcwd()
|
|
try:
|
|
# it looks like subdir= is broken in the from_pretrained also, so this is necessary
|
|
os.chdir(tmp_dir)
|
|
|
|
# this should work because we trust the code
|
|
_ = AutoTokenizer.from_pretrained(fake_model_id, local_files_only=True, trust_remote_code=True)
|
|
try:
|
|
# this should fail because we don't trust and we're not at a terminal for interactive response
|
|
_ = AutoTokenizer.from_pretrained(fake_model_id, local_files_only=True, trust_remote_code=False)
|
|
self.fail("AutoTokenizer.from_pretrained with trust_remote_code=False should raise ValueException")
|
|
except ValueError:
|
|
pass
|
|
finally:
|
|
os.chdir(prev_dir)
|