transformers/tests/models/auto/test_feature_extraction_aut...

179 lines
8.1 KiB
Python

# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
SAMPLE_FEATURE_EXTRACTION_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_CONFIG = get_tests_dir("fixtures/dummy-config.json")
class AutoFeatureExtractorTest(unittest.TestCase):
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_feature_extractor_from_model_shortcut(self):
config = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_feature_extractor_from_local_directory_from_key(self):
config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_feature_extractor_from_local_directory_from_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = Wav2Vec2Config()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
config_dict = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR).to_dict()
config_dict.pop("feature_extractor_type")
config = Wav2Vec2FeatureExtractor(**config_dict)
# save in new folder
model_config.save_pretrained(tmpdirname)
config.save_pretrained(tmpdirname)
config = AutoFeatureExtractor.from_pretrained(tmpdirname)
# make sure private variable is not incorrectly saved
dict_as_saved = json.loads(config.to_json_string())
self.assertTrue("_processor_class" not in dict_as_saved)
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_feature_extractor_from_local_file(self):
config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG)
self.assertIsInstance(config, Wav2Vec2FeatureExtractor)
def test_repo_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
):
_ = AutoFeatureExtractor.from_pretrained("bert-base")
def test_revision_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
):
_ = AutoFeatureExtractor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
def test_feature_extractor_not_found(self):
with self.assertRaisesRegex(
EnvironmentError,
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
):
_ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model")
def test_from_pretrained_dynamic_feature_extractor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor"
)
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(tmp_dir)
reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir, trust_remote_code=True)
self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor")
def test_new_feature_extractor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor)
# Now that the config is registered, it can be used as any other config with the auto-API
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(tmp_dir)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir)
self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_feature_extractor_conflict(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
is_local = True
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
# If remote code is not set, the default is to use local
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor"
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
self.assertTrue(feature_extractor.is_local)
# If remote code is disabled, we load the local one.
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
self.assertTrue(feature_extractor.is_local)
# If remote is enabled, we load from the Hub
feature_extractor = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True
)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
self.assertTrue(not hasattr(feature_extractor, "is_local"))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]