transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py

193 lines
7.2 KiB
Python

import argparse
import logging
import os
import sys
import time
import tensorflow as tf
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
from transformers.modeling_tf_utils import keras
from transformers.utils import is_sagemaker_dp_enabled
if os.environ.get("SDP_ENABLED") or is_sagemaker_dp_enabled():
SDP_ENABLED = True
os.environ["SAGEMAKER_INSTANCE_TYPE"] = "p3dn.24xlarge"
import smdistributed.dataparallel.tensorflow as sdp
else:
SDP_ENABLED = False
def fit(model, loss, opt, train_dataset, epochs, train_batch_size, max_steps=None):
pbar = tqdm(train_dataset)
for i, batch in enumerate(pbar):
with tf.GradientTape() as tape:
inputs, targets = batch
outputs = model(batch)
loss_value = loss(targets, outputs.logits)
if SDP_ENABLED:
tape = sdp.DistributedGradientTape(tape, sparse_as_dense=True)
grads = tape.gradient(loss_value, model.trainable_variables)
opt.apply_gradients(zip(grads, model.trainable_variables))
pbar.set_description(f"Loss: {loss_value:.4f}")
if SDP_ENABLED and i == 0:
sdp.broadcast_variables(model.variables, root_rank=0)
sdp.broadcast_variables(opt.variables(), root_rank=0)
if max_steps and i >= max_steps:
break
train_results = {"loss": loss_value.numpy()}
return train_results
def get_datasets(tokenizer, train_batch_size, eval_batch_size):
# Load dataset
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"])
# Preprocess train dataset
train_dataset = train_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
train_features = {
x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"]))
# Preprocess test dataset
test_dataset = test_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
test_features = {
x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"]))
if SDP_ENABLED:
tf_train_dataset = tf_train_dataset.shard(sdp.size(), sdp.rank())
tf_test_dataset = tf_test_dataset.shard(sdp.size(), sdp.rank())
tf_train_dataset = tf_train_dataset.batch(train_batch_size, drop_remainder=True)
tf_test_dataset = tf_test_dataset.batch(eval_batch_size, drop_remainder=True)
return tf_train_dataset, tf_test_dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--per_device_train_batch_size", type=int, default=16)
parser.add_argument("--per_device_eval_batch_size", type=int, default=8)
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--learning_rate", type=str, default=5e-5)
parser.add_argument("--do_train", type=bool, default=True)
parser.add_argument("--do_eval", type=bool, default=True)
parser.add_argument("--output_dir", type=str)
parser.add_argument("--max_steps", type=int, default=None)
# Data, model, and output directories
parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])
args, _ = parser.parse_known_args()
# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.getLevelName("INFO"),
handlers=[logging.StreamHandler(sys.stdout)],
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
if SDP_ENABLED:
sdp.init()
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], "GPU")
# Load model and tokenizer
model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
# get datasets
tf_train_dataset, tf_test_dataset = get_datasets(
tokenizer=tokenizer,
train_batch_size=args.per_device_train_batch_size,
eval_batch_size=args.per_device_eval_batch_size,
)
# fine optimizer and loss
optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metrics = [keras.metrics.SparseCategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
# Training
if args.do_train:
# train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.train_batch_size)
start_train_time = time.time()
train_results = fit(
model,
loss,
optimizer,
tf_train_dataset,
args.epochs,
args.per_device_train_batch_size,
max_steps=args.max_steps,
)
end_train_time = time.time() - start_train_time
logger.info("*** Train ***")
logger.info(f"train_runtime = {end_train_time}")
output_eval_file = os.path.join(args.output_dir, "train_results.txt")
if not SDP_ENABLED or sdp.rank() == 0:
with open(output_eval_file, "w") as writer:
logger.info("***** Train results *****")
logger.info(train_results)
for key, value in train_results.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Evaluation
if args.do_eval and (not SDP_ENABLED or sdp.rank() == 0):
result = model.evaluate(tf_test_dataset, batch_size=args.per_device_eval_batch_size, return_dict=True)
logger.info("*** Evaluate ***")
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
logger.info(result)
for key, value in result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Save result
if SDP_ENABLED:
if sdp.rank() == 0:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
else:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)