292 lines
13 KiB
Python
292 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import itertools
|
|
import os
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
from transformers import WhisperFeatureExtractor
|
|
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torch_gpu
|
|
from transformers.utils.import_utils import is_torch_available
|
|
|
|
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
global_rng = random.Random()
|
|
|
|
|
|
def floats_list(shape, scale=1.0, rng=None, name=None):
|
|
"""Creates a random float32 tensor"""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
values = []
|
|
for batch_idx in range(shape[0]):
|
|
values.append([])
|
|
for _ in range(shape[1]):
|
|
values[-1].append(rng.random() * scale)
|
|
|
|
return values
|
|
|
|
|
|
class WhisperFeatureExtractionTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
min_seq_length=400,
|
|
max_seq_length=2000,
|
|
feature_size=10,
|
|
hop_length=160,
|
|
chunk_length=8,
|
|
padding_value=0.0,
|
|
sampling_rate=4_000,
|
|
return_attention_mask=False,
|
|
do_normalize=True,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.min_seq_length = min_seq_length
|
|
self.max_seq_length = max_seq_length
|
|
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
|
|
self.padding_value = padding_value
|
|
self.sampling_rate = sampling_rate
|
|
self.return_attention_mask = return_attention_mask
|
|
self.do_normalize = do_normalize
|
|
self.feature_size = feature_size
|
|
self.chunk_length = chunk_length
|
|
self.hop_length = hop_length
|
|
|
|
def prepare_feat_extract_dict(self):
|
|
return {
|
|
"feature_size": self.feature_size,
|
|
"hop_length": self.hop_length,
|
|
"chunk_length": self.chunk_length,
|
|
"padding_value": self.padding_value,
|
|
"sampling_rate": self.sampling_rate,
|
|
"return_attention_mask": self.return_attention_mask,
|
|
"do_normalize": self.do_normalize,
|
|
}
|
|
|
|
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
|
|
def _flatten(list_of_lists):
|
|
return list(itertools.chain(*list_of_lists))
|
|
|
|
if equal_length:
|
|
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
|
|
else:
|
|
# make sure that inputs increase in size
|
|
speech_inputs = [
|
|
floats_list((x, self.feature_size))
|
|
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
|
|
]
|
|
if numpify:
|
|
speech_inputs = [np.asarray(x) for x in speech_inputs]
|
|
return speech_inputs
|
|
|
|
|
|
class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
|
|
feature_extraction_class = WhisperFeatureExtractor
|
|
|
|
def setUp(self):
|
|
self.feat_extract_tester = WhisperFeatureExtractionTester(self)
|
|
|
|
def test_feat_extract_from_and_save_pretrained(self):
|
|
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
|
|
check_json_file_has_correct_format(saved_file)
|
|
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
|
|
|
|
dict_first = feat_extract_first.to_dict()
|
|
dict_second = feat_extract_second.to_dict()
|
|
mel_1 = feat_extract_first.mel_filters
|
|
mel_2 = feat_extract_second.mel_filters
|
|
self.assertTrue(np.allclose(mel_1, mel_2))
|
|
self.assertEqual(dict_first, dict_second)
|
|
|
|
def test_feat_extract_to_json_file(self):
|
|
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
|
|
feat_extract_first.to_json_file(json_file_path)
|
|
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
|
|
|
|
dict_first = feat_extract_first.to_dict()
|
|
dict_second = feat_extract_second.to_dict()
|
|
mel_1 = feat_extract_first.mel_filters
|
|
mel_2 = feat_extract_second.mel_filters
|
|
self.assertTrue(np.allclose(mel_1, mel_2))
|
|
self.assertEqual(dict_first, dict_second)
|
|
|
|
def test_call(self):
|
|
# Tests that all call wrap to encode_plus and batch_encode_plus
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
|
# create three inputs of length 800, 1000, and 1200
|
|
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
|
|
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
|
|
|
|
# Test feature size
|
|
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
|
|
self.assertTrue(input_features.ndim == 3)
|
|
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames)
|
|
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)
|
|
|
|
# Test not batched input
|
|
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
|
|
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
|
|
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
|
|
|
|
# Test batched
|
|
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
|
|
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
|
|
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
|
|
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
|
|
|
|
# Test 2-D numpy arrays are batched.
|
|
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
|
|
np_speech_inputs = np.asarray(speech_inputs)
|
|
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
|
|
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
|
|
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
|
|
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
|
|
|
|
# Test truncation required
|
|
speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)]
|
|
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
|
|
|
|
speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs]
|
|
np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]
|
|
|
|
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
|
|
encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
|
|
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
|
|
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
|
|
|
|
@require_torch
|
|
def test_double_precision_pad(self):
|
|
import torch
|
|
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
|
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
|
|
py_speech_inputs = np_speech_inputs.tolist()
|
|
|
|
for inputs in [py_speech_inputs, np_speech_inputs]:
|
|
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
|
|
self.assertTrue(np_processed.input_features.dtype == np.float32)
|
|
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
|
|
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
|
|
|
|
def _load_datasamples(self, num_samples):
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
# automatic decoding with librispeech
|
|
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
|
|
|
|
return [x["array"] for x in speech_samples]
|
|
|
|
@require_torch_gpu
|
|
@require_torch
|
|
def test_torch_integration(self):
|
|
# fmt: off
|
|
EXPECTED_INPUT_FEATURES = torch.tensor(
|
|
[
|
|
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
|
|
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
|
|
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
|
|
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
feature_extractor = WhisperFeatureExtractor()
|
|
input_features = feature_extractor(input_speech, return_tensors="pt").input_features
|
|
|
|
self.assertEqual(input_features.shape, (1, 80, 3000))
|
|
self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
|
|
|
|
@unittest.mock.patch("transformers.models.whisper.feature_extraction_whisper.is_torch_available", lambda: False)
|
|
def test_numpy_integration(self):
|
|
# fmt: off
|
|
EXPECTED_INPUT_FEATURES = np.array(
|
|
[
|
|
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
|
|
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
|
|
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
|
|
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
feature_extractor = WhisperFeatureExtractor()
|
|
input_features = feature_extractor(input_speech, return_tensors="np").input_features
|
|
self.assertEqual(input_features.shape, (1, 80, 3000))
|
|
self.assertTrue(np.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
|
|
|
|
def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
|
|
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
|
audio = self._load_datasamples(1)[0]
|
|
audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue
|
|
audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0]
|
|
|
|
self.assertTrue(np.all(np.mean(audio) < 1e-3))
|
|
self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3))
|
|
|
|
@require_torch_gpu
|
|
@require_torch
|
|
def test_torch_integration_batch(self):
|
|
# fmt: off
|
|
EXPECTED_INPUT_FEATURES = torch.tensor(
|
|
[
|
|
[
|
|
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
|
|
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
|
|
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
|
|
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
|
|
],
|
|
[
|
|
-0.4696, -0.0751, 0.0276, -0.0312, -0.0540, -0.0383, 0.1295, 0.0568,
|
|
-0.2071, -0.0548, 0.0389, -0.0316, -0.2346, -0.1068, -0.0322, 0.0475,
|
|
-0.1709, -0.0041, 0.0872, 0.0537, 0.0075, -0.0392, 0.0371, 0.0189,
|
|
-0.1522, -0.0270, 0.0744, 0.0738, -0.0245, -0.0667
|
|
],
|
|
[
|
|
-0.2337, -0.0060, -0.0063, -0.2353, -0.0431, 0.1102, -0.1492, -0.0292,
|
|
0.0787, -0.0608, 0.0143, 0.0582, 0.0072, 0.0101, -0.0444, -0.1701,
|
|
-0.0064, -0.0027, -0.0826, -0.0730, -0.0099, -0.0762, -0.0170, 0.0446,
|
|
-0.1153, 0.0960, -0.0361, 0.0652, 0.1207, 0.0277
|
|
]
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
input_speech = self._load_datasamples(3)
|
|
feature_extractor = WhisperFeatureExtractor()
|
|
input_features = feature_extractor(input_speech, return_tensors="pt").input_features
|
|
self.assertEqual(input_features.shape, (3, 80, 3000))
|
|
self.assertTrue(torch.allclose(input_features[:, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
|