263 lines
9.6 KiB
Python
263 lines
9.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch MGP-STR model. """
|
|
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import MgpstrConfig
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import MgpstrForSceneTextRecognition, MgpstrModel
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import MgpstrProcessor
|
|
|
|
|
|
class MgpstrModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
is_training=False,
|
|
batch_size=13,
|
|
image_size=(32, 128),
|
|
patch_size=4,
|
|
num_channels=3,
|
|
max_token_length=27,
|
|
num_character_labels=38,
|
|
num_bpe_labels=99,
|
|
num_wordpiece_labels=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
mlp_ratio=4.0,
|
|
patch_embeds_hidden_size=257,
|
|
output_hidden_states=None,
|
|
):
|
|
self.parent = parent
|
|
self.is_training = is_training
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.max_token_length = max_token_length
|
|
self.num_character_labels = num_character_labels
|
|
self.num_bpe_labels = num_bpe_labels
|
|
self.num_wordpiece_labels = num_wordpiece_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.mlp_ratio = mlp_ratio
|
|
self.patch_embeds_hidden_size = patch_embeds_hidden_size
|
|
self.output_hidden_states = output_hidden_states
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
|
|
config = self.get_config()
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return MgpstrConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
max_token_length=self.max_token_length,
|
|
num_character_labels=self.num_character_labels,
|
|
num_bpe_labels=self.num_bpe_labels,
|
|
num_wordpiece_labels=self.num_wordpiece_labels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
mlp_ratio=self.mlp_ratio,
|
|
output_hidden_states=self.output_hidden_states,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = MgpstrForSceneTextRecognition(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
generated_ids = model(pixel_values)
|
|
self.parent.assertEqual(
|
|
generated_ids[0][0].shape, (self.batch_size, self.max_token_length, self.num_character_labels)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class MgpstrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (MgpstrForSceneTextRecognition,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": MgpstrForSceneTextRecognition, "image-feature-extraction": MgpstrModel}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
fx_compatible = False
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_attention_outputs = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = MgpstrModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=MgpstrConfig, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="MgpstrModel does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
@unittest.skip(reason="MgpstrModel does not support feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
def test_gradient_checkpointing_backward_compatibility(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
|
|
config.gradient_checkpointing = True
|
|
model = model_class(config)
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[self.model_tester.patch_embeds_hidden_size, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# override as the `logit_scale` parameter initilization is different for MgpstrModel
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if isinstance(param, (nn.Linear, nn.Conv2d, nn.LayerNorm)):
|
|
if param.requires_grad:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
|
|
# We will verify our results on an image from the IIIT-5k dataset
|
|
def prepare_img():
|
|
url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
|
|
im = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
|
return im
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class MgpstrModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference(self):
|
|
model_name = "alibaba-damo/mgp-str-base"
|
|
model = MgpstrForSceneTextRecognition.from_pretrained(model_name).to(torch_device)
|
|
processor = MgpstrProcessor.from_pretrained(model_name)
|
|
|
|
image = prepare_img()
|
|
inputs = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(inputs)
|
|
|
|
# verify the logits
|
|
self.assertEqual(outputs.logits[0].shape, torch.Size((1, 27, 38)))
|
|
|
|
out_strs = processor.batch_decode(outputs.logits)
|
|
expected_text = "ticket"
|
|
|
|
self.assertEqual(out_strs["generated_text"][0], expected_text)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[[-39.5397, -44.4024, -36.1844], [-61.4709, -63.8639, -58.3454], [-74.0225, -68.5494, -71.2164]]],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0][:, 1:4, 1:4], expected_slice, atol=1e-4))
|