243 lines
12 KiB
Python
243 lines
12 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
|
|
from transformers import M2M100Tokenizer, is_torch_available
|
|
from transformers.testing_utils import (
|
|
get_tests_dir,
|
|
nested_simplify,
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_torch,
|
|
slow,
|
|
)
|
|
from transformers.utils import is_sentencepiece_available
|
|
|
|
|
|
if is_sentencepiece_available():
|
|
from transformers.models.m2m_100.tokenization_m2m_100 import VOCAB_FILES_NAMES, save_json
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
if is_sentencepiece_available():
|
|
SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right
|
|
|
|
EN_CODE = 128022
|
|
FR_CODE = 128028
|
|
|
|
|
|
@require_sentencepiece
|
|
class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "facebook/m2m100_418M"
|
|
tokenizer_class = M2M100Tokenizer
|
|
test_rust_tokenizer = False
|
|
test_seq2seq = False
|
|
test_sentencepiece = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
save_dir = Path(self.tmpdirname)
|
|
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
|
|
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
|
|
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
|
|
|
|
tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
return (
|
|
"This is a test",
|
|
"This is a test",
|
|
)
|
|
|
|
def test_convert_token_and_id(self):
|
|
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
|
|
token = "</s>"
|
|
token_id = 0
|
|
|
|
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
|
|
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
|
|
|
|
def test_get_vocab(self):
|
|
tokenizer = self.get_tokenizer()
|
|
vocab_keys = list(tokenizer.get_vocab().keys())
|
|
|
|
self.assertEqual(vocab_keys[0], "</s>")
|
|
self.assertEqual(vocab_keys[1], "<unk>")
|
|
self.assertEqual(vocab_keys[-1], "<s>")
|
|
# The length of the vocab keys can be different
|
|
# self.assertEqual(len(vocab_keys), tokenizer.vocab_size)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.convert_tokens_to_ids(tokens),
|
|
[2, 3, 4, 5, 6],
|
|
)
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
|
|
self.assertListEqual(back_tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
text = tokenizer.convert_tokens_to_string(tokens)
|
|
self.assertEqual(text, "This is a test")
|
|
|
|
@slow
|
|
def test_tokenizer_integration(self):
|
|
expected_encoding = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip
|
|
|
|
self.tokenizer_integration_test_util(
|
|
expected_encoding=expected_encoding,
|
|
model_name="facebook/m2m100_418M",
|
|
revision="c168bae485c864188cf9aa0e4108b0b6934dc91e",
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class M2M100TokenizerIntegrationTest(unittest.TestCase):
|
|
checkpoint_name = "facebook/m2m100_418M"
|
|
src_text = [
|
|
"In my opinion, there are two levels of response from the French government.",
|
|
"NSA Affair Emphasizes Complete Lack of Debate on Intelligence",
|
|
]
|
|
tgt_text = [
|
|
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
|
|
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
|
|
]
|
|
|
|
expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] # fmt: skip
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained(
|
|
cls.checkpoint_name, src_lang="en", tgt_lang="fr"
|
|
)
|
|
cls.pad_token_id = 1
|
|
return cls
|
|
|
|
def check_language_codes(self):
|
|
self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006)
|
|
self.assertEqual(self.tokenizer.get_lang_id("en"), 128022)
|
|
self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076)
|
|
self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063)
|
|
|
|
def test_get_vocab(self):
|
|
vocab = self.tokenizer.get_vocab()
|
|
self.assertEqual(len(vocab), len(self.tokenizer))
|
|
self.assertEqual(vocab["<unk>"], 3)
|
|
self.assertIn(self.tokenizer.get_lang_token("en"), vocab)
|
|
|
|
def test_tokenizer_batch_encode_plus(self):
|
|
self.tokenizer.src_lang = "en"
|
|
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
|
|
self.assertListEqual(self.expected_src_tokens, ids)
|
|
|
|
def test_tokenizer_decode_ignores_language_codes(self):
|
|
self.assertIn(FR_CODE, self.tokenizer.all_special_ids)
|
|
generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: skip
|
|
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
|
expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
|
|
self.assertEqual(result, expected_french)
|
|
self.assertNotIn(self.tokenizer.eos_token, result)
|
|
|
|
def test_special_tokens_unaffacted_by_save_load(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
original_special_tokens = self.tokenizer.lang_token_to_id
|
|
self.tokenizer.save_pretrained(tmpdirname)
|
|
new_tok = M2M100Tokenizer.from_pretrained(tmpdirname)
|
|
self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens)
|
|
|
|
@require_torch
|
|
def test_batch_fairseq_parity(self):
|
|
self.tokenizer.src_lang = "en"
|
|
self.tokenizer.tgt_lang = "fr"
|
|
|
|
batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt")
|
|
|
|
batch["decoder_input_ids"] = shift_tokens_right(
|
|
batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id
|
|
)
|
|
|
|
for k in batch:
|
|
batch[k] = batch[k].tolist()
|
|
# batch = {k: v.tolist() for k,v in batch.items()}
|
|
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
|
|
# batch.decoder_inputs_ids[0][0] ==
|
|
assert batch.input_ids[1][0] == EN_CODE
|
|
assert batch.input_ids[1][-1] == 2
|
|
assert batch.labels[1][0] == FR_CODE
|
|
assert batch.labels[1][-1] == 2
|
|
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
|
|
|
|
@require_torch
|
|
def test_src_lang_setter(self):
|
|
self.tokenizer.src_lang = "mr"
|
|
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
|
|
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
|
|
|
|
self.tokenizer.src_lang = "zh"
|
|
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
|
|
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
|
|
|
|
@require_torch
|
|
def test_tokenizer_target_mode(self):
|
|
self.tokenizer.tgt_lang = "mr"
|
|
self.tokenizer._switch_to_target_mode()
|
|
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
|
|
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
|
|
self.tokenizer._switch_to_input_mode()
|
|
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
|
|
|
|
self.tokenizer.tgt_lang = "zh"
|
|
self.tokenizer._switch_to_target_mode()
|
|
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
|
|
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
|
|
self.tokenizer._switch_to_input_mode()
|
|
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
|
|
|
|
@require_torch
|
|
def test_tokenizer_translation(self):
|
|
inputs = self.tokenizer._build_translation_inputs("A test", return_tensors="pt", src_lang="en", tgt_lang="ar")
|
|
|
|
self.assertEqual(
|
|
nested_simplify(inputs),
|
|
{
|
|
# en_XX, A, test, EOS
|
|
"input_ids": [[128022, 58, 4183, 2]],
|
|
"attention_mask": [[1, 1, 1, 1]],
|
|
# ar_AR
|
|
"forced_bos_token_id": 128006,
|
|
},
|
|
)
|