325 lines
12 KiB
Python
325 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. and Baidu team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch ErnieM model. """
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import ErnieMConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
ErnieMForInformationExtraction,
|
|
ErnieMForMultipleChoice,
|
|
ErnieMForQuestionAnswering,
|
|
ErnieMForSequenceClassification,
|
|
ErnieMForTokenClassification,
|
|
ErnieMModel,
|
|
)
|
|
|
|
|
|
class ErnieMModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def prepare_config_and_inputs_for_uiem(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask
|
|
|
|
def get_config(self):
|
|
return ErnieMConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
|
model = ErnieMModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, return_dict=True)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = ErnieMForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_for_information_extraction(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = ErnieMForInformationExtraction(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
sequence_labels = torch.ones_like(input_ids, dtype=torch.float32)
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ErnieMForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ErnieMForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
input_ids.to(torch_device)
|
|
input_mask.to(torch_device)
|
|
token_labels.to(torch_device)
|
|
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_for_multiple_choice(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = ErnieMForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
result = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
labels=choice_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ErnieMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
ErnieMModel,
|
|
ErnieMForMultipleChoice,
|
|
ErnieMForQuestionAnswering,
|
|
ErnieMForSequenceClassification,
|
|
ErnieMForTokenClassification,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": ErnieMModel,
|
|
"question-answering": ErnieMForQuestionAnswering,
|
|
"text-classification": ErnieMForSequenceClassification,
|
|
"token-classification": ErnieMForTokenClassification,
|
|
"zero-shot": ErnieMForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_torchscript = False
|
|
|
|
# TODO: Fix the failed tests when this model gets more usage
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
if pipeline_test_casse_name == "QAPipelineTests":
|
|
return True
|
|
|
|
return False
|
|
|
|
def setUp(self):
|
|
self.model_tester = ErnieMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ErnieMConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_information_extraction(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_information_extraction(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "susnato/ernie-m-base_pytorch"
|
|
model = ErnieMModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
class ErnieMModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_model(self):
|
|
model = ErnieMModel.from_pretrained("susnato/ernie-m-base_pytorch")
|
|
model.eval()
|
|
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
|
|
output = model(input_ids)[0]
|
|
|
|
# TODO Replace vocab size
|
|
hidden_size = 768
|
|
|
|
expected_shape = torch.Size((1, 6, hidden_size))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[[-0.0012, 0.1245, -0.0214], [-0.0742, 0.0244, -0.0771], [-0.0333, 0.1164, -0.1554]]]
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
|