376 lines
14 KiB
Python
Executable File
376 lines
14 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
|
|
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
|
|
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
|
|
"""
|
|
|
|
|
|
import logging
|
|
import math
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from glob import glob
|
|
from typing import Optional
|
|
|
|
from torch.utils.data import ConcatDataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
MODEL_WITH_LM_HEAD_MAPPING,
|
|
AutoConfig,
|
|
AutoModelWithLMHead,
|
|
AutoTokenizer,
|
|
DataCollatorForLanguageModeling,
|
|
DataCollatorForPermutationLanguageModeling,
|
|
DataCollatorForWholeWordMask,
|
|
HfArgumentParser,
|
|
LineByLineTextDataset,
|
|
LineByLineWithRefDataset,
|
|
PreTrainedTokenizer,
|
|
TextDataset,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import is_main_process
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
|
"""
|
|
|
|
model_name_or_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
|
|
" scratch."
|
|
)
|
|
},
|
|
)
|
|
model_type: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
train_data_file: Optional[str] = field(
|
|
default=None, metadata={"help": "The input training data file (a text file)."}
|
|
)
|
|
train_data_files: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The input training data files (multiple files in glob format). "
|
|
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
|
|
)
|
|
},
|
|
)
|
|
eval_data_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
)
|
|
train_ref_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input train ref data file for whole word mask in Chinese."},
|
|
)
|
|
eval_ref_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."},
|
|
)
|
|
line_by_line: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
|
|
)
|
|
|
|
mlm: bool = field(
|
|
default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
|
|
)
|
|
whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."})
|
|
mlm_probability: float = field(
|
|
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
|
|
)
|
|
plm_probability: float = field(
|
|
default=1 / 6,
|
|
metadata={
|
|
"help": (
|
|
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
|
|
" modeling."
|
|
)
|
|
},
|
|
)
|
|
max_span_length: int = field(
|
|
default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
|
|
)
|
|
|
|
block_size: int = field(
|
|
default=-1,
|
|
metadata={
|
|
"help": (
|
|
"Optional input sequence length after tokenization. "
|
|
"The training dataset will be truncated in block of this size for training."
|
|
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
|
|
|
|
def get_dataset(
|
|
args: DataTrainingArguments,
|
|
tokenizer: PreTrainedTokenizer,
|
|
evaluate: bool = False,
|
|
cache_dir: Optional[str] = None,
|
|
):
|
|
def _dataset(file_path, ref_path=None):
|
|
if args.line_by_line:
|
|
if ref_path is not None:
|
|
if not args.whole_word_mask or not args.mlm:
|
|
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
|
|
return LineByLineWithRefDataset(
|
|
tokenizer=tokenizer,
|
|
file_path=file_path,
|
|
block_size=args.block_size,
|
|
ref_path=ref_path,
|
|
)
|
|
|
|
return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
|
|
else:
|
|
return TextDataset(
|
|
tokenizer=tokenizer,
|
|
file_path=file_path,
|
|
block_size=args.block_size,
|
|
overwrite_cache=args.overwrite_cache,
|
|
cache_dir=cache_dir,
|
|
)
|
|
|
|
if evaluate:
|
|
return _dataset(args.eval_data_file, args.eval_ref_file)
|
|
elif args.train_data_files:
|
|
return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
|
|
else:
|
|
return _dataset(args.train_data_file, args.train_ref_file)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if data_args.eval_data_file is None and training_args.do_eval:
|
|
raise ValueError(
|
|
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
|
|
"or remove the --do_eval argument."
|
|
)
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
|
|
" --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
training_args.local_rank,
|
|
training_args.device,
|
|
training_args.n_gpu,
|
|
bool(training_args.local_rank != -1),
|
|
training_args.fp16,
|
|
)
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed
|
|
set_seed(training_args.seed)
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
|
|
if model_args.config_name:
|
|
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
|
|
elif model_args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
|
|
else:
|
|
config = CONFIG_MAPPING[model_args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
|
|
if model_args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
|
|
elif model_args.model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
|
|
else:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"
|
|
" script, save it,and load it from here, using --tokenizer_name"
|
|
)
|
|
|
|
if model_args.model_name_or_path:
|
|
model = AutoModelWithLMHead.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = AutoModelWithLMHead.from_config(config)
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
|
|
raise ValueError(
|
|
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the "
|
|
"--mlm flag (masked language modeling)."
|
|
)
|
|
|
|
if data_args.block_size <= 0:
|
|
data_args.block_size = tokenizer.max_len
|
|
# Our input block size will be the max possible for the model
|
|
else:
|
|
data_args.block_size = min(data_args.block_size, tokenizer.max_len)
|
|
|
|
# Get datasets
|
|
|
|
train_dataset = (
|
|
get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
|
|
)
|
|
eval_dataset = (
|
|
get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
|
|
if training_args.do_eval
|
|
else None
|
|
)
|
|
if config.model_type == "xlnet":
|
|
data_collator = DataCollatorForPermutationLanguageModeling(
|
|
tokenizer=tokenizer,
|
|
plm_probability=data_args.plm_probability,
|
|
max_span_length=data_args.max_span_length,
|
|
)
|
|
else:
|
|
if data_args.mlm and data_args.whole_word_mask:
|
|
data_collator = DataCollatorForWholeWordMask(
|
|
tokenizer=tokenizer, mlm_probability=data_args.mlm_probability
|
|
)
|
|
else:
|
|
data_collator = DataCollatorForLanguageModeling(
|
|
tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
|
|
)
|
|
|
|
# Initialize our Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
data_collator=data_collator,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
prediction_loss_only=True,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
model_path = (
|
|
model_args.model_name_or_path
|
|
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
|
|
else None
|
|
)
|
|
trainer.train(model_path=model_path)
|
|
trainer.save_model()
|
|
# For convenience, we also re-save the tokenizer to the same directory,
|
|
# so that you can share your model easily on huggingface.co/models =)
|
|
if trainer.is_world_master():
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
|
|
eval_output = trainer.evaluate()
|
|
|
|
perplexity = math.exp(eval_output["eval_loss"])
|
|
result = {"perplexity": perplexity}
|
|
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
|
|
if trainer.is_world_master():
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
results.update(result)
|
|
|
|
return results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|