481 lines
15 KiB
Markdown
481 lines
15 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
# Pipelines
|
||
|
||
pipelines是使用模型进行推理的一种简单方法。这些pipelines是抽象了库中大部分复杂代码的对象,提供了一个专用于多个任务的简单API,包括专名识别、掩码语言建模、情感分析、特征提取和问答等。请参阅[任务摘要](../task_summary)以获取使用示例。
|
||
|
||
有两种pipelines抽象类需要注意:
|
||
|
||
- [`pipeline`],它是封装所有其他pipelines的最强大的对象。
|
||
- 针对特定任务pipelines,适用于[音频](#audio)、[计算机视觉](#computer-vision)、[自然语言处理](#natural-language-processing)和[多模态](#multimodal)任务。
|
||
|
||
## pipeline抽象类
|
||
|
||
*pipeline*抽象类是对所有其他可用pipeline的封装。它可以像任何其他pipeline一样实例化,但进一步提供额外的便利性。
|
||
|
||
简单调用一个项目:
|
||
|
||
|
||
```python
|
||
>>> pipe = pipeline("text-classification")
|
||
>>> pipe("This restaurant is awesome")
|
||
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
||
```
|
||
|
||
如果您想使用 [hub](https://huggingface.co) 上的特定模型,可以忽略任务,如果hub上的模型已经定义了该任务:
|
||
|
||
```python
|
||
>>> pipe = pipeline(model="FacebookAI/roberta-large-mnli")
|
||
>>> pipe("This restaurant is awesome")
|
||
[{'label': 'NEUTRAL', 'score': 0.7313136458396912}]
|
||
```
|
||
|
||
要在多个项目上调用pipeline,可以使用*列表*调用它。
|
||
|
||
```python
|
||
>>> pipe = pipeline("text-classification")
|
||
>>> pipe(["This restaurant is awesome", "This restaurant is awful"])
|
||
[{'label': 'POSITIVE', 'score': 0.9998743534088135},
|
||
{'label': 'NEGATIVE', 'score': 0.9996669292449951}]
|
||
```
|
||
|
||
为了遍历整个数据集,建议直接使用 `dataset`。这意味着您不需要一次性分配整个数据集,也不需要自己进行批处理。这应该与GPU上的自定义循环一样快。如果不是,请随时提出issue。
|
||
|
||
```python
|
||
import datasets
|
||
from transformers import pipeline
|
||
from transformers.pipelines.pt_utils import KeyDataset
|
||
from tqdm.auto import tqdm
|
||
|
||
pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
|
||
dataset = datasets.load_dataset("superb", name="asr", split="test")
|
||
|
||
# KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item
|
||
# as we're not interested in the *target* part of the dataset. For sentence pair use KeyPairDataset
|
||
for out in tqdm(pipe(KeyDataset(dataset, "file"))):
|
||
print(out)
|
||
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
|
||
# {"text": ....}
|
||
# ....
|
||
```
|
||
|
||
为了方便使用,也可以使用生成器:
|
||
|
||
|
||
```python
|
||
from transformers import pipeline
|
||
|
||
pipe = pipeline("text-classification")
|
||
|
||
|
||
def data():
|
||
while True:
|
||
# This could come from a dataset, a database, a queue or HTTP request
|
||
# in a server
|
||
# Caveat: because this is iterative, you cannot use `num_workers > 1` variable
|
||
# to use multiple threads to preprocess data. You can still have 1 thread that
|
||
# does the preprocessing while the main runs the big inference
|
||
yield "This is a test"
|
||
|
||
|
||
for out in pipe(data()):
|
||
print(out)
|
||
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
|
||
# {"text": ....}
|
||
# ....
|
||
```
|
||
|
||
[[autodoc]] pipeline
|
||
|
||
## Pipeline batching
|
||
|
||
所有pipeline都可以使用批处理。这将在pipeline使用其流处理功能时起作用(即传递列表或 `Dataset` 或 `generator` 时)。
|
||
|
||
```python
|
||
from transformers import pipeline
|
||
from transformers.pipelines.pt_utils import KeyDataset
|
||
import datasets
|
||
|
||
dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
|
||
pipe = pipeline("text-classification", device=0)
|
||
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
|
||
print(out)
|
||
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
||
# Exactly the same output as before, but the content are passed
|
||
# as batches to the model
|
||
```
|
||
|
||
<Tip warning={true}>
|
||
|
||
然而,这并不自动意味着性能提升。它可能是一个10倍的加速或5倍的减速,具体取决于硬件、数据和实际使用的模型。
|
||
|
||
主要是加速的示例:
|
||
|
||
</Tip>
|
||
|
||
```python
|
||
from transformers import pipeline
|
||
from torch.utils.data import Dataset
|
||
from tqdm.auto import tqdm
|
||
|
||
pipe = pipeline("text-classification", device=0)
|
||
|
||
|
||
class MyDataset(Dataset):
|
||
def __len__(self):
|
||
return 5000
|
||
|
||
def __getitem__(self, i):
|
||
return "This is a test"
|
||
|
||
|
||
dataset = MyDataset()
|
||
|
||
for batch_size in [1, 8, 64, 256]:
|
||
print("-" * 30)
|
||
print(f"Streaming batch_size={batch_size}")
|
||
for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
|
||
pass
|
||
```
|
||
|
||
```
|
||
# On GTX 970
|
||
------------------------------
|
||
Streaming no batching
|
||
100%|██████████████████████████████████████████████████████████████████████| 5000/5000 [00:26<00:00, 187.52it/s]
|
||
------------------------------
|
||
Streaming batch_size=8
|
||
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:04<00:00, 1205.95it/s]
|
||
------------------------------
|
||
Streaming batch_size=64
|
||
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:02<00:00, 2478.24it/s]
|
||
------------------------------
|
||
Streaming batch_size=256
|
||
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:01<00:00, 2554.43it/s]
|
||
(diminishing returns, saturated the GPU)
|
||
```
|
||
|
||
主要是减速的示例:
|
||
|
||
```python
|
||
class MyDataset(Dataset):
|
||
def __len__(self):
|
||
return 5000
|
||
|
||
def __getitem__(self, i):
|
||
if i % 64 == 0:
|
||
n = 100
|
||
else:
|
||
n = 1
|
||
return "This is a test" * n
|
||
```
|
||
|
||
与其他句子相比,这是一个非常长的句子。在这种情况下,**整个**批次将需要400个tokens的长度,因此整个批次将是 [64, 400] 而不是 [64, 4],从而导致较大的减速。更糟糕的是,在更大的批次上,程序会崩溃。
|
||
|
||
```
|
||
------------------------------
|
||
Streaming no batching
|
||
100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 183.69it/s]
|
||
------------------------------
|
||
Streaming batch_size=8
|
||
100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:03<00:00, 265.74it/s]
|
||
------------------------------
|
||
Streaming batch_size=64
|
||
100%|██████████████████████████████████████████████████████████████████████| 1000/1000 [00:26<00:00, 37.80it/s]
|
||
------------------------------
|
||
Streaming batch_size=256
|
||
0%| | 0/1000 [00:00<?, ?it/s]
|
||
Traceback (most recent call last):
|
||
File "/home/nicolas/src/transformers/test.py", line 42, in <module>
|
||
for out in tqdm(pipe(dataset, batch_size=256), total=len(dataset)):
|
||
....
|
||
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
|
||
RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch)
|
||
```
|
||
|
||
对于这个问题,没有好的(通用)解决方案,效果可能因您的用例而异。经验法则如下:
|
||
|
||
对于用户,一个经验法则是:
|
||
|
||
- **使用硬件测量负载性能。测量、测量、再测量。真实的数字是唯一的方法。**
|
||
- 如果受到延迟的限制(进行推理的实时产品),不要进行批处理。
|
||
- 如果使用CPU,不要进行批处理。
|
||
- 如果您在GPU上处理的是吞吐量(您希望在大量静态数据上运行模型),则:
|
||
- 如果对序列长度的大小没有概念("自然"数据),默认情况下不要进行批处理,进行测试并尝试逐渐添加,添加OOM检查以在失败时恢复(如果您不能控制序列长度,它将在某些时候失败)。
|
||
- 如果您的序列长度非常规律,那么批处理更有可能非常有趣,进行测试并推动它,直到出现OOM。
|
||
- GPU越大,批处理越有可能变得更有趣
|
||
- 一旦启用批处理,确保能够很好地处理OOM。
|
||
|
||
## Pipeline chunk batching
|
||
|
||
`zero-shot-classification` 和 `question-answering` 在某种意义上稍微特殊,因为单个输入可能会导致模型的多次前向传递。在正常情况下,这将导致 `batch_size` 参数的问题。
|
||
|
||
为了规避这个问题,这两个pipeline都有点特殊,它们是 `ChunkPipeline` 而不是常规的 `Pipeline`。简而言之:
|
||
|
||
|
||
```python
|
||
preprocessed = pipe.preprocess(inputs)
|
||
model_outputs = pipe.forward(preprocessed)
|
||
outputs = pipe.postprocess(model_outputs)
|
||
```
|
||
|
||
现在变成:
|
||
|
||
|
||
```python
|
||
all_model_outputs = []
|
||
for preprocessed in pipe.preprocess(inputs):
|
||
model_outputs = pipe.forward(preprocessed)
|
||
all_model_outputs.append(model_outputs)
|
||
outputs = pipe.postprocess(all_model_outputs)
|
||
```
|
||
|
||
这对您的代码应该是非常直观的,因为pipeline的使用方式是相同的。
|
||
|
||
这是一个简化的视图,因为Pipeline可以自动处理批次!这意味着您不必担心您的输入实际上会触发多少次前向传递,您可以独立于输入优化 `batch_size`。前面部分的注意事项仍然适用。
|
||
|
||
## Pipeline自定义
|
||
|
||
如果您想要重载特定的pipeline。
|
||
|
||
请随时为您手头的任务创建一个issue,Pipeline的目标是易于使用并支持大多数情况,因此 `transformers` 可能支持您的用例。
|
||
|
||
如果您想简单地尝试一下,可以:
|
||
|
||
- 继承您选择的pipeline
|
||
|
||
```python
|
||
class MyPipeline(TextClassificationPipeline):
|
||
def postprocess():
|
||
# Your code goes here
|
||
scores = scores * 100
|
||
# And here
|
||
|
||
|
||
my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...)
|
||
# or if you use *pipeline* function, then:
|
||
my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)
|
||
```
|
||
|
||
这样就可以让您编写所有想要的自定义代码。
|
||
|
||
|
||
## 实现一个pipeline
|
||
|
||
[实现一个新的pipeline](../add_new_pipeline)
|
||
|
||
## 音频
|
||
|
||
可用于音频任务的pipeline包括以下几种。
|
||
|
||
### AudioClassificationPipeline
|
||
|
||
[[autodoc]] AudioClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### AutomaticSpeechRecognitionPipeline
|
||
|
||
[[autodoc]] AutomaticSpeechRecognitionPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### TextToAudioPipeline
|
||
|
||
[[autodoc]] TextToAudioPipeline
|
||
- __call__
|
||
- all
|
||
|
||
|
||
### ZeroShotAudioClassificationPipeline
|
||
|
||
[[autodoc]] ZeroShotAudioClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
## 计算机视觉
|
||
|
||
可用于计算机视觉任务的pipeline包括以下几种。
|
||
|
||
### DepthEstimationPipeline
|
||
[[autodoc]] DepthEstimationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ImageClassificationPipeline
|
||
|
||
[[autodoc]] ImageClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ImageSegmentationPipeline
|
||
|
||
[[autodoc]] ImageSegmentationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ImageToImagePipeline
|
||
|
||
[[autodoc]] ImageToImagePipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ObjectDetectionPipeline
|
||
|
||
[[autodoc]] ObjectDetectionPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### VideoClassificationPipeline
|
||
|
||
[[autodoc]] VideoClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ZeroShotImageClassificationPipeline
|
||
|
||
[[autodoc]] ZeroShotImageClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ZeroShotObjectDetectionPipeline
|
||
|
||
[[autodoc]] ZeroShotObjectDetectionPipeline
|
||
- __call__
|
||
- all
|
||
|
||
## 自然语言处理
|
||
|
||
可用于自然语言处理任务的pipeline包括以下几种。
|
||
|
||
### ConversationalPipeline
|
||
|
||
[[autodoc]] Conversation
|
||
|
||
[[autodoc]] ConversationalPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### FillMaskPipeline
|
||
|
||
[[autodoc]] FillMaskPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### NerPipeline
|
||
|
||
[[autodoc]] NerPipeline
|
||
|
||
See [`TokenClassificationPipeline`] for all details.
|
||
|
||
### QuestionAnsweringPipeline
|
||
|
||
[[autodoc]] QuestionAnsweringPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### SummarizationPipeline
|
||
|
||
[[autodoc]] SummarizationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### TableQuestionAnsweringPipeline
|
||
|
||
[[autodoc]] TableQuestionAnsweringPipeline
|
||
- __call__
|
||
|
||
### TextClassificationPipeline
|
||
|
||
[[autodoc]] TextClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### TextGenerationPipeline
|
||
|
||
[[autodoc]] TextGenerationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### Text2TextGenerationPipeline
|
||
|
||
[[autodoc]] Text2TextGenerationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### TokenClassificationPipeline
|
||
|
||
[[autodoc]] TokenClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### TranslationPipeline
|
||
|
||
[[autodoc]] TranslationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ZeroShotClassificationPipeline
|
||
|
||
[[autodoc]] ZeroShotClassificationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
## 多模态
|
||
|
||
可用于多模态任务的pipeline包括以下几种。
|
||
|
||
### DocumentQuestionAnsweringPipeline
|
||
|
||
[[autodoc]] DocumentQuestionAnsweringPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### FeatureExtractionPipeline
|
||
|
||
[[autodoc]] FeatureExtractionPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ImageFeatureExtractionPipeline
|
||
|
||
[[autodoc]] ImageFeatureExtractionPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### ImageToTextPipeline
|
||
|
||
[[autodoc]] ImageToTextPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### MaskGenerationPipeline
|
||
|
||
[[autodoc]] MaskGenerationPipeline
|
||
- __call__
|
||
- all
|
||
|
||
### VisualQuestionAnsweringPipeline
|
||
|
||
[[autodoc]] VisualQuestionAnsweringPipeline
|
||
- __call__
|
||
- all
|
||
|
||
## Parent class: `Pipeline`
|
||
|
||
[[autodoc]] Pipeline
|