transformers/docs/source/pt/converting_tensorflow_model...

6.6 KiB

Convertendo checkpoints do TensorFlow para Pytorch

Uma interface de linha de comando é fornecida para converter os checkpoints originais Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM em modelos que podem ser carregados usando os métodos from_pretrained da biblioteca.

A partir da versão 2.3.0 o script de conversão agora faz parte do transformers CLI (transformers-cli) disponível em qualquer instalação transformers >= 2.3.0.

A documentação abaixo reflete o formato do comando transformers-cli convert.

BERT

Você pode converter qualquer checkpoint do BERT em TensorFlow (em particular os modelos pré-treinados lançados pelo Google) em um arquivo PyTorch usando um convert_bert_original_tf_checkpoint_to_pytorch.py script.

Esta Interface de Linha de Comando (CLI) recebe como entrada um checkpoint do TensorFlow (três arquivos começando com bert_model.ckpt) e o arquivo de configuração (bert_config.json), e então cria um modelo PyTorch para esta configuração, carrega os pesos do checkpoint do TensorFlow no modelo PyTorch e salva o modelo resultante em um arquivo PyTorch que pode ser importado usando from_pretrained() (veja o exemplo em quicktour , run_glue.py ).

Você só precisa executar este script de conversão uma vez para obter um modelo PyTorch. Você pode então desconsiderar o checkpoint em TensorFlow (os três arquivos começando com bert_model.ckpt), mas certifique-se de manter o arquivo de configuração (
bert_config.json) e o arquivo de vocabulário (vocab.txt), pois eles também são necessários para o modelo PyTorch.

Para executar este script de conversão específico, você precisará ter o TensorFlow e o PyTorch instalados (pip install tensorflow). O resto do repositório requer apenas o PyTorch.

Aqui está um exemplo do processo de conversão para um modelo BERT-Base Uncased pré-treinado:

export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12

transformers-cli convert --model_type bert \
  --tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
  --config $BERT_BASE_DIR/bert_config.json \
  --pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin

Você pode baixar os modelos pré-treinados do Google para a conversão aqui.

ALBERT

Converta os checkpoints do modelo ALBERT em TensorFlow para PyTorch usando o convert_albert_original_tf_checkpoint_to_pytorch.py script.

A Interface de Linha de Comando (CLI) recebe como entrada um checkpoint do TensorFlow (três arquivos começando com model.ckpt-best) e o arquivo de configuração (albert_config.json), então cria e salva um modelo PyTorch. Para executar esta conversão, você precisa ter o TensorFlow e o PyTorch instalados.

Aqui está um exemplo do processo de conversão para o modelo ALBERT Base pré-treinado:

export ALBERT_BASE_DIR=/path/to/albert/albert_base

transformers-cli convert --model_type albert \
  --tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
  --config $ALBERT_BASE_DIR/albert_config.json \
  --pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin

Você pode baixar os modelos pré-treinados do Google para a conversão aqui.

OpenAI GPT

Aqui está um exemplo do processo de conversão para um modelo OpenAI GPT pré-treinado, supondo que seu checkpoint NumPy foi salvo com o mesmo formato do modelo pré-treinado OpenAI (veja aqui
)

export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights

transformers-cli convert --model_type gpt \
  --tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
  --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
  [--config OPENAI_GPT_CONFIG] \
  [--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \

OpenAI GPT-2

Aqui está um exemplo do processo de conversão para um modelo OpenAI GPT-2 pré-treinado (consulte aqui)

export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/openai-community/gpt2/pretrained/weights

transformers-cli convert --model_type openai-community/gpt2 \
  --tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
  --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
  [--config OPENAI_GPT2_CONFIG] \
  [--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]

XLNet

Aqui está um exemplo do processo de conversão para um modelo XLNet pré-treinado:

export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config

transformers-cli convert --model_type xlnet \
  --tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
  --config $TRANSFO_XL_CONFIG_PATH \
  --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
  [--finetuning_task_name XLNET_FINETUNED_TASK] \

XLM

Aqui está um exemplo do processo de conversão para um modelo XLM pré-treinado:

export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint

transformers-cli convert --model_type xlm \
  --tf_checkpoint $XLM_CHECKPOINT_PATH \
  --pytorch_dump_output $PYTORCH_DUMP_OUTPUT
 [--config XML_CONFIG] \
 [--finetuning_task_name XML_FINETUNED_TASK]

T5

Aqui está um exemplo do processo de conversão para um modelo T5 pré-treinado:

export T5=/path/to/t5/uncased_L-12_H-768_A-12

transformers-cli convert --model_type t5 \
  --tf_checkpoint $T5/t5_model.ckpt \
  --config $T5/t5_config.json \
  --pytorch_dump_output $T5/pytorch_model.bin