1225 lines
49 KiB
Python
1225 lines
49 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import ast
|
|
import collections
|
|
import datetime
|
|
import functools
|
|
import json
|
|
import operator
|
|
import os
|
|
import re
|
|
import sys
|
|
import time
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import requests
|
|
from get_ci_error_statistics import get_jobs
|
|
from get_previous_daily_ci import get_last_daily_ci_reports
|
|
from huggingface_hub import HfApi
|
|
from slack_sdk import WebClient
|
|
|
|
|
|
api = HfApi()
|
|
client = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])
|
|
|
|
NON_MODEL_TEST_MODULES = [
|
|
"benchmark",
|
|
"deepspeed",
|
|
"extended",
|
|
"fixtures",
|
|
"generation",
|
|
"onnx",
|
|
"optimization",
|
|
"pipelines",
|
|
"sagemaker",
|
|
"trainer",
|
|
"utils",
|
|
]
|
|
|
|
|
|
def handle_test_results(test_results):
|
|
expressions = test_results.split(" ")
|
|
|
|
failed = 0
|
|
success = 0
|
|
|
|
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
|
|
# When it is too long, those signs are not present.
|
|
time_spent = expressions[-2] if "=" in expressions[-1] else expressions[-1]
|
|
|
|
for i, expression in enumerate(expressions):
|
|
if "failed" in expression:
|
|
failed += int(expressions[i - 1])
|
|
if "passed" in expression:
|
|
success += int(expressions[i - 1])
|
|
|
|
return failed, success, time_spent
|
|
|
|
|
|
def handle_stacktraces(test_results):
|
|
# These files should follow the following architecture:
|
|
# === FAILURES ===
|
|
# <path>:<line>: Error ...
|
|
# <path>:<line>: Error ...
|
|
# <empty line>
|
|
|
|
total_stacktraces = test_results.split("\n")[1:-1]
|
|
stacktraces = []
|
|
for stacktrace in total_stacktraces:
|
|
try:
|
|
line = stacktrace[: stacktrace.index(" ")].split(":")[-2]
|
|
error_message = stacktrace[stacktrace.index(" ") :]
|
|
|
|
stacktraces.append(f"(line {line}) {error_message}")
|
|
except Exception:
|
|
stacktraces.append("Cannot retrieve error message.")
|
|
|
|
return stacktraces
|
|
|
|
|
|
def dicts_to_sum(objects: Union[Dict[str, Dict], List[dict]]):
|
|
if isinstance(objects, dict):
|
|
lists = objects.values()
|
|
else:
|
|
lists = objects
|
|
|
|
# Convert each dictionary to counter
|
|
counters = map(collections.Counter, lists)
|
|
# Sum all the counters
|
|
return functools.reduce(operator.add, counters)
|
|
|
|
|
|
class Message:
|
|
def __init__(
|
|
self,
|
|
title: str,
|
|
ci_title: str,
|
|
model_results: Dict,
|
|
additional_results: Dict,
|
|
selected_warnings: List = None,
|
|
prev_ci_artifacts=None,
|
|
):
|
|
self.title = title
|
|
self.ci_title = ci_title
|
|
|
|
# Failures and success of the modeling tests
|
|
self.n_model_success = sum(r["success"] for r in model_results.values())
|
|
self.n_model_single_gpu_failures = sum(dicts_to_sum(r["failed"])["single"] for r in model_results.values())
|
|
self.n_model_multi_gpu_failures = sum(dicts_to_sum(r["failed"])["multi"] for r in model_results.values())
|
|
|
|
# Some suites do not have a distinction between single and multi GPU.
|
|
self.n_model_unknown_failures = sum(dicts_to_sum(r["failed"])["unclassified"] for r in model_results.values())
|
|
self.n_model_failures = (
|
|
self.n_model_single_gpu_failures + self.n_model_multi_gpu_failures + self.n_model_unknown_failures
|
|
)
|
|
|
|
# Failures and success of the additional tests
|
|
self.n_additional_success = sum(r["success"] for r in additional_results.values())
|
|
|
|
if len(additional_results) > 0:
|
|
# `dicts_to_sum` uses `dicts_to_sum` which requires a non empty dictionary. Let's just add an empty entry.
|
|
all_additional_failures = dicts_to_sum([r["failed"] for r in additional_results.values()])
|
|
self.n_additional_single_gpu_failures = all_additional_failures["single"]
|
|
self.n_additional_multi_gpu_failures = all_additional_failures["multi"]
|
|
self.n_additional_unknown_gpu_failures = all_additional_failures["unclassified"]
|
|
else:
|
|
self.n_additional_single_gpu_failures = 0
|
|
self.n_additional_multi_gpu_failures = 0
|
|
self.n_additional_unknown_gpu_failures = 0
|
|
|
|
self.n_additional_failures = (
|
|
self.n_additional_single_gpu_failures
|
|
+ self.n_additional_multi_gpu_failures
|
|
+ self.n_additional_unknown_gpu_failures
|
|
)
|
|
|
|
# Results
|
|
self.n_failures = self.n_model_failures + self.n_additional_failures
|
|
self.n_success = self.n_model_success + self.n_additional_success
|
|
self.n_tests = self.n_failures + self.n_success
|
|
|
|
self.model_results = model_results
|
|
self.additional_results = additional_results
|
|
|
|
self.thread_ts = None
|
|
|
|
if selected_warnings is None:
|
|
selected_warnings = []
|
|
self.selected_warnings = selected_warnings
|
|
|
|
self.prev_ci_artifacts = prev_ci_artifacts
|
|
|
|
@property
|
|
def time(self) -> str:
|
|
all_results = [*self.model_results.values(), *self.additional_results.values()]
|
|
time_spent = [r["time_spent"].split(", ")[0] for r in all_results if len(r["time_spent"])]
|
|
total_secs = 0
|
|
|
|
for time in time_spent:
|
|
time_parts = time.split(":")
|
|
|
|
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
|
|
if len(time_parts) == 1:
|
|
time_parts = [0, 0, time_parts[0]]
|
|
|
|
hours, minutes, seconds = int(time_parts[0]), int(time_parts[1]), float(time_parts[2])
|
|
total_secs += hours * 3600 + minutes * 60 + seconds
|
|
|
|
hours, minutes, seconds = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
|
|
return f"{int(hours)}h{int(minutes)}m{int(seconds)}s"
|
|
|
|
@property
|
|
def header(self) -> Dict:
|
|
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
|
|
|
|
@property
|
|
def ci_title_section(self) -> Dict:
|
|
return {"type": "section", "text": {"type": "mrkdwn", "text": self.ci_title}}
|
|
|
|
@property
|
|
def no_failures(self) -> Dict:
|
|
return {
|
|
"type": "section",
|
|
"text": {
|
|
"type": "plain_text",
|
|
"text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.",
|
|
"emoji": True,
|
|
},
|
|
"accessory": {
|
|
"type": "button",
|
|
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
|
|
"url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
|
|
},
|
|
}
|
|
|
|
@property
|
|
def failures(self) -> Dict:
|
|
return {
|
|
"type": "section",
|
|
"text": {
|
|
"type": "plain_text",
|
|
"text": (
|
|
f"There were {self.n_failures} failures, out of {self.n_tests} tests.\n"
|
|
f"Number of model failures: {self.n_model_failures}.\n"
|
|
f"The suite ran in {self.time}."
|
|
),
|
|
"emoji": True,
|
|
},
|
|
"accessory": {
|
|
"type": "button",
|
|
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
|
|
"url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
|
|
},
|
|
}
|
|
|
|
@property
|
|
def warnings(self) -> Dict:
|
|
# If something goes wrong, let's avoid the CI report failing to be sent.
|
|
button_text = "Check warnings (Link not found)"
|
|
# Use the workflow run link
|
|
job_link = f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}"
|
|
|
|
for job in github_actions_jobs:
|
|
if "Extract warnings in CI artifacts" in job["name"] and job["conclusion"] == "success":
|
|
button_text = "Check warnings"
|
|
# Use the actual job link
|
|
job_link = job["html_url"]
|
|
break
|
|
|
|
huggingface_hub_warnings = [x for x in self.selected_warnings if "huggingface_hub" in x]
|
|
text = f"There are {len(self.selected_warnings)} warnings being selected."
|
|
text += f"\n{len(huggingface_hub_warnings)} of them are from `huggingface_hub`."
|
|
|
|
return {
|
|
"type": "section",
|
|
"text": {
|
|
"type": "plain_text",
|
|
"text": text,
|
|
"emoji": True,
|
|
},
|
|
"accessory": {
|
|
"type": "button",
|
|
"text": {"type": "plain_text", "text": button_text, "emoji": True},
|
|
"url": job_link,
|
|
},
|
|
}
|
|
|
|
@staticmethod
|
|
def get_device_report(report, rjust=6):
|
|
if "single" in report and "multi" in report:
|
|
return f"{str(report['single']).rjust(rjust)} | {str(report['multi']).rjust(rjust)} | "
|
|
elif "single" in report:
|
|
return f"{str(report['single']).rjust(rjust)} | {'0'.rjust(rjust)} | "
|
|
elif "multi" in report:
|
|
return f"{'0'.rjust(rjust)} | {str(report['multi']).rjust(rjust)} | "
|
|
|
|
@property
|
|
def category_failures(self) -> Dict:
|
|
model_failures = [v["failed"] for v in self.model_results.values()]
|
|
|
|
category_failures = {}
|
|
|
|
for model_failure in model_failures:
|
|
for key, value in model_failure.items():
|
|
if key not in category_failures:
|
|
category_failures[key] = dict(value)
|
|
else:
|
|
category_failures[key]["unclassified"] += value["unclassified"]
|
|
category_failures[key]["single"] += value["single"]
|
|
category_failures[key]["multi"] += value["multi"]
|
|
|
|
individual_reports = []
|
|
for key, value in category_failures.items():
|
|
device_report = self.get_device_report(value)
|
|
|
|
if sum(value.values()):
|
|
if device_report:
|
|
individual_reports.append(f"{device_report}{key}")
|
|
else:
|
|
individual_reports.append(key)
|
|
|
|
header = "Single | Multi | Category\n"
|
|
category_failures_report = prepare_reports(
|
|
title="The following modeling categories had failures", header=header, reports=individual_reports
|
|
)
|
|
|
|
return {"type": "section", "text": {"type": "mrkdwn", "text": category_failures_report}}
|
|
|
|
def compute_diff_for_failure_reports(self, curr_failure_report, prev_failure_report): # noqa
|
|
# Remove the leading and training parts that don't contain failure count information.
|
|
model_failures = curr_failure_report.split("\n")[3:-2]
|
|
prev_model_failures = prev_failure_report.split("\n")[3:-2]
|
|
entries_changed = set(model_failures).difference(prev_model_failures)
|
|
|
|
prev_map = {}
|
|
for f in prev_model_failures:
|
|
items = [x.strip() for x in f.split("| ")]
|
|
prev_map[items[-1]] = [int(x) for x in items[:-1]]
|
|
|
|
curr_map = {}
|
|
for f in entries_changed:
|
|
items = [x.strip() for x in f.split("| ")]
|
|
curr_map[items[-1]] = [int(x) for x in items[:-1]]
|
|
|
|
diff_map = {}
|
|
for k, v in curr_map.items():
|
|
if k not in prev_map:
|
|
diff_map[k] = v
|
|
else:
|
|
diff = [x - y for x, y in zip(v, prev_map[k])]
|
|
if max(diff) > 0:
|
|
diff_map[k] = diff
|
|
|
|
entries_changed = []
|
|
for model_name, diff_values in diff_map.items():
|
|
diff = [str(x) for x in diff_values]
|
|
diff = [f"+{x}" if (x != "0" and not x.startswith("-")) else x for x in diff]
|
|
diff = [x.rjust(9) for x in diff]
|
|
device_report = " | ".join(diff) + " | "
|
|
report = f"{device_report}{model_name}"
|
|
entries_changed.append(report)
|
|
entries_changed = sorted(entries_changed, key=lambda s: s.split("| ")[-1])
|
|
|
|
return entries_changed
|
|
|
|
@property
|
|
def model_failures(self) -> List[Dict]:
|
|
# Obtain per-model failures
|
|
def per_model_sum(model_category_dict):
|
|
return dicts_to_sum(model_category_dict["failed"].values())
|
|
|
|
failures = {}
|
|
non_model_failures = {
|
|
k: per_model_sum(v) for k, v in self.model_results.items() if sum(per_model_sum(v).values())
|
|
}
|
|
|
|
for k, v in self.model_results.items():
|
|
if k in NON_MODEL_TEST_MODULES:
|
|
pass
|
|
|
|
if sum(per_model_sum(v).values()):
|
|
dict_failed = dict(v["failed"])
|
|
pytorch_specific_failures = dict_failed.pop("PyTorch")
|
|
tensorflow_specific_failures = dict_failed.pop("TensorFlow")
|
|
other_failures = dicts_to_sum(dict_failed.values())
|
|
|
|
failures[k] = {
|
|
"PyTorch": pytorch_specific_failures,
|
|
"TensorFlow": tensorflow_specific_failures,
|
|
"other": other_failures,
|
|
}
|
|
|
|
model_reports = []
|
|
other_module_reports = []
|
|
|
|
for key, value in non_model_failures.items():
|
|
if key in NON_MODEL_TEST_MODULES:
|
|
device_report = self.get_device_report(value)
|
|
|
|
if sum(value.values()):
|
|
if device_report:
|
|
report = f"{device_report}{key}"
|
|
else:
|
|
report = key
|
|
|
|
other_module_reports.append(report)
|
|
|
|
for key, value in failures.items():
|
|
device_report_values = [
|
|
value["PyTorch"]["single"],
|
|
value["PyTorch"]["multi"],
|
|
value["TensorFlow"]["single"],
|
|
value["TensorFlow"]["multi"],
|
|
sum(value["other"].values()),
|
|
]
|
|
|
|
if sum(device_report_values):
|
|
device_report = " | ".join([str(x).rjust(9) for x in device_report_values]) + " | "
|
|
report = f"{device_report}{key}"
|
|
|
|
model_reports.append(report)
|
|
|
|
# (Possibly truncated) reports for the current workflow run - to be sent to Slack channels
|
|
model_header = "Single PT | Multi PT | Single TF | Multi TF | Other | Category\n"
|
|
sorted_model_reports = sorted(model_reports, key=lambda s: s.split("| ")[-1])
|
|
model_failures_report = prepare_reports(
|
|
title="These following model modules had failures", header=model_header, reports=sorted_model_reports
|
|
)
|
|
|
|
module_header = "Single | Multi | Category\n"
|
|
sorted_module_reports = sorted(other_module_reports, key=lambda s: s.split("| ")[-1])
|
|
module_failures_report = prepare_reports(
|
|
title="The following non-model modules had failures", header=module_header, reports=sorted_module_reports
|
|
)
|
|
|
|
# To be sent to Slack channels
|
|
model_failure_sections = [
|
|
{"type": "section", "text": {"type": "mrkdwn", "text": model_failures_report}},
|
|
{"type": "section", "text": {"type": "mrkdwn", "text": module_failures_report}},
|
|
]
|
|
|
|
# Save the complete (i.e. no truncation) failure tables (of the current workflow run)
|
|
# (to be uploaded as artifacts)
|
|
|
|
model_failures_report = prepare_reports(
|
|
title="These following model modules had failures",
|
|
header=model_header,
|
|
reports=sorted_model_reports,
|
|
to_truncate=False,
|
|
)
|
|
file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/model_failures_report.txt")
|
|
with open(file_path, "w", encoding="UTF-8") as fp:
|
|
fp.write(model_failures_report)
|
|
|
|
module_failures_report = prepare_reports(
|
|
title="The following non-model modules had failures",
|
|
header=module_header,
|
|
reports=sorted_module_reports,
|
|
to_truncate=False,
|
|
)
|
|
file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/module_failures_report.txt")
|
|
with open(file_path, "w", encoding="UTF-8") as fp:
|
|
fp.write(module_failures_report)
|
|
|
|
if self.prev_ci_artifacts is not None:
|
|
# if the last run produces artifact named `ci_results_{job_name}`
|
|
if (
|
|
f"ci_results_{job_name}" in self.prev_ci_artifacts
|
|
and "model_failures_report.txt" in self.prev_ci_artifacts[f"ci_results_{job_name}"]
|
|
):
|
|
# Compute the difference of the previous/current (model failure) table
|
|
prev_model_failures = self.prev_ci_artifacts[f"ci_results_{job_name}"]["model_failures_report.txt"]
|
|
entries_changed = self.compute_diff_for_failure_reports(model_failures_report, prev_model_failures)
|
|
if len(entries_changed) > 0:
|
|
# Save the complete difference
|
|
diff_report = prepare_reports(
|
|
title="Changed model modules failures",
|
|
header=model_header,
|
|
reports=entries_changed,
|
|
to_truncate=False,
|
|
)
|
|
file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/changed_model_failures_report.txt")
|
|
with open(file_path, "w", encoding="UTF-8") as fp:
|
|
fp.write(diff_report)
|
|
|
|
# To be sent to Slack channels
|
|
diff_report = prepare_reports(
|
|
title="*Changed model modules failures*",
|
|
header=model_header,
|
|
reports=entries_changed,
|
|
)
|
|
model_failure_sections.append(
|
|
{"type": "section", "text": {"type": "mrkdwn", "text": diff_report}},
|
|
)
|
|
|
|
return model_failure_sections
|
|
|
|
@property
|
|
def additional_failures(self) -> Dict:
|
|
failures = {k: v["failed"] for k, v in self.additional_results.items()}
|
|
errors = {k: v["error"] for k, v in self.additional_results.items()}
|
|
|
|
individual_reports = []
|
|
for key, value in failures.items():
|
|
device_report = self.get_device_report(value)
|
|
|
|
if sum(value.values()) or errors[key]:
|
|
report = f"{key}"
|
|
if errors[key]:
|
|
report = f"[Errored out] {report}"
|
|
if device_report:
|
|
report = f"{device_report}{report}"
|
|
|
|
individual_reports.append(report)
|
|
|
|
header = "Single | Multi | Category\n"
|
|
failures_report = prepare_reports(
|
|
title="The following non-modeling tests had failures", header=header, reports=individual_reports
|
|
)
|
|
|
|
return {"type": "section", "text": {"type": "mrkdwn", "text": failures_report}}
|
|
|
|
@property
|
|
def payload(self) -> str:
|
|
blocks = [self.header]
|
|
|
|
if self.ci_title:
|
|
blocks.append(self.ci_title_section)
|
|
|
|
if self.n_model_failures > 0 or self.n_additional_failures > 0:
|
|
blocks.append(self.failures)
|
|
|
|
if self.n_model_failures > 0:
|
|
blocks.append(self.category_failures)
|
|
for block in self.model_failures:
|
|
if block["text"]["text"]:
|
|
blocks.append(block)
|
|
|
|
if self.n_additional_failures > 0:
|
|
blocks.append(self.additional_failures)
|
|
|
|
if self.n_model_failures == 0 and self.n_additional_failures == 0:
|
|
blocks.append(self.no_failures)
|
|
|
|
if len(self.selected_warnings) > 0:
|
|
blocks.append(self.warnings)
|
|
|
|
new_failure_blocks = self.get_new_model_failure_blocks(with_header=False)
|
|
if len(new_failure_blocks) > 0:
|
|
blocks.extend(new_failure_blocks)
|
|
|
|
return json.dumps(blocks)
|
|
|
|
@staticmethod
|
|
def error_out(title, ci_title="", runner_not_available=False, runner_failed=False, setup_failed=False):
|
|
blocks = []
|
|
title_block = {"type": "header", "text": {"type": "plain_text", "text": title}}
|
|
blocks.append(title_block)
|
|
|
|
if ci_title:
|
|
ci_title_block = {"type": "section", "text": {"type": "mrkdwn", "text": ci_title}}
|
|
blocks.append(ci_title_block)
|
|
|
|
offline_runners = []
|
|
if runner_not_available:
|
|
text = "💔 CI runners are not available! Tests are not run. 😭"
|
|
result = os.environ.get("OFFLINE_RUNNERS")
|
|
if result is not None:
|
|
offline_runners = json.loads(result)
|
|
elif runner_failed:
|
|
text = "💔 CI runners have problems! Tests are not run. 😭"
|
|
elif setup_failed:
|
|
text = "💔 Setup job failed. Tests are not run. 😭"
|
|
else:
|
|
text = "💔 There was an issue running the tests. 😭"
|
|
|
|
error_block_1 = {
|
|
"type": "header",
|
|
"text": {
|
|
"type": "plain_text",
|
|
"text": text,
|
|
},
|
|
}
|
|
|
|
text = ""
|
|
if len(offline_runners) > 0:
|
|
text = "\n • " + "\n • ".join(offline_runners)
|
|
text = f"The following runners are offline:\n{text}\n\n"
|
|
text += "🙏 Let's fix it ASAP! 🙏"
|
|
|
|
error_block_2 = {
|
|
"type": "section",
|
|
"text": {
|
|
"type": "plain_text",
|
|
"text": text,
|
|
},
|
|
"accessory": {
|
|
"type": "button",
|
|
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
|
|
"url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
|
|
},
|
|
}
|
|
blocks.extend([error_block_1, error_block_2])
|
|
|
|
payload = json.dumps(blocks)
|
|
|
|
print("Sending the following payload")
|
|
print(json.dumps({"blocks": blocks}))
|
|
|
|
client.chat_postMessage(
|
|
channel=SLACK_REPORT_CHANNEL_ID,
|
|
text=text,
|
|
blocks=payload,
|
|
)
|
|
|
|
def post(self):
|
|
payload = self.payload
|
|
print("Sending the following payload")
|
|
print(json.dumps({"blocks": json.loads(payload)}))
|
|
|
|
text = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed."
|
|
|
|
self.thread_ts = client.chat_postMessage(
|
|
channel=SLACK_REPORT_CHANNEL_ID,
|
|
blocks=payload,
|
|
text=text,
|
|
)
|
|
|
|
def get_reply_blocks(self, job_name, job_result, failures, device, text):
|
|
"""
|
|
failures: A list with elements of the form {"line": full test name, "trace": error trace}
|
|
"""
|
|
# `text` must be less than 3001 characters in Slack SDK
|
|
# keep some room for adding "[Truncated]" when necessary
|
|
MAX_ERROR_TEXT = 3000 - len("[Truncated]")
|
|
|
|
failure_text = ""
|
|
for idx, error in enumerate(failures):
|
|
new_text = failure_text + f'*{error["line"]}*\n_{error["trace"]}_\n\n'
|
|
if len(new_text) > MAX_ERROR_TEXT:
|
|
# `failure_text` here has length <= 3000
|
|
failure_text = failure_text + "[Truncated]"
|
|
break
|
|
# `failure_text` here has length <= MAX_ERROR_TEXT
|
|
failure_text = new_text
|
|
|
|
title = job_name
|
|
if device is not None:
|
|
title += f" ({device}-gpu)"
|
|
|
|
content = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
|
|
|
|
# TODO: Make sure we always have a valid job link (or at least a way not to break the report sending)
|
|
# Currently we get the device from a job's artifact name.
|
|
# If a device is found, the job name should contain the device type, for example, `XXX (single-gpu)`.
|
|
# This could be done by adding `machine_type` in a job's `strategy`.
|
|
# (If `job_result["job_link"][device]` is `None`, we get an error: `... [ERROR] must provide a string ...`)
|
|
if job_result["job_link"] is not None and job_result["job_link"][device] is not None:
|
|
content["accessory"] = {
|
|
"type": "button",
|
|
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
|
|
"url": job_result["job_link"][device],
|
|
}
|
|
|
|
return [
|
|
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
|
|
content,
|
|
{"type": "section", "text": {"type": "mrkdwn", "text": failure_text}},
|
|
]
|
|
|
|
def get_new_model_failure_blocks(self, with_header=True, to_truncate=True):
|
|
if self.prev_ci_artifacts is None:
|
|
return {}
|
|
|
|
sorted_dict = sorted(self.model_results.items(), key=lambda t: t[0])
|
|
|
|
prev_model_results = {}
|
|
if (
|
|
f"ci_results_{job_name}" in self.prev_ci_artifacts
|
|
and "model_results.json" in self.prev_ci_artifacts[f"ci_results_{job_name}"]
|
|
):
|
|
prev_model_results = json.loads(self.prev_ci_artifacts[f"ci_results_{job_name}"]["model_results.json"])
|
|
|
|
all_failure_lines = {}
|
|
for job, job_result in sorted_dict:
|
|
if len(job_result["failures"]):
|
|
devices = sorted(job_result["failures"].keys(), reverse=True)
|
|
for device in devices:
|
|
failures = job_result["failures"][device]
|
|
prev_error_lines = {}
|
|
if job in prev_model_results and device in prev_model_results[job]["failures"]:
|
|
prev_error_lines = {error["line"] for error in prev_model_results[job]["failures"][device]}
|
|
|
|
url = None
|
|
if job_result["job_link"] is not None and job_result["job_link"][device] is not None:
|
|
url = job_result["job_link"][device]
|
|
|
|
for idx, error in enumerate(failures):
|
|
if error["line"] in prev_error_lines:
|
|
continue
|
|
|
|
new_text = f'{error["line"]}\n\n'
|
|
|
|
if new_text not in all_failure_lines:
|
|
all_failure_lines[new_text] = []
|
|
|
|
all_failure_lines[new_text].append(f"<{url}|{device}>" if url is not None else device)
|
|
|
|
MAX_ERROR_TEXT = 3000 - len("[Truncated]") - len("```New model failures```\n\n")
|
|
if not to_truncate:
|
|
MAX_ERROR_TEXT = float("inf")
|
|
failure_text = ""
|
|
for line, devices in all_failure_lines.items():
|
|
new_text = failure_text + f"{'|'.join(devices)} gpu\n{line}"
|
|
if len(new_text) > MAX_ERROR_TEXT:
|
|
# `failure_text` here has length <= 3000
|
|
failure_text = failure_text + "[Truncated]"
|
|
break
|
|
# `failure_text` here has length <= MAX_ERROR_TEXT
|
|
failure_text = new_text
|
|
|
|
blocks = []
|
|
if failure_text:
|
|
if with_header:
|
|
blocks.append(
|
|
{"type": "header", "text": {"type": "plain_text", "text": "New model failures", "emoji": True}}
|
|
)
|
|
else:
|
|
failure_text = f"*New model failures*\n\n{failure_text}"
|
|
blocks.append({"type": "section", "text": {"type": "mrkdwn", "text": failure_text}})
|
|
|
|
return blocks
|
|
|
|
def post_reply(self):
|
|
if self.thread_ts is None:
|
|
raise ValueError("Can only post reply if a post has been made.")
|
|
|
|
sorted_dict = sorted(self.model_results.items(), key=lambda t: t[0])
|
|
for job, job_result in sorted_dict:
|
|
if len(job_result["failures"]):
|
|
for device, failures in job_result["failures"].items():
|
|
text = "\n".join(
|
|
sorted([f"*{k}*: {v[device]}" for k, v in job_result["failed"].items() if v[device]])
|
|
)
|
|
|
|
blocks = self.get_reply_blocks(job, job_result, failures, device, text=text)
|
|
|
|
print("Sending the following reply")
|
|
print(json.dumps({"blocks": blocks}))
|
|
|
|
client.chat_postMessage(
|
|
channel=SLACK_REPORT_CHANNEL_ID,
|
|
text=f"Results for {job}",
|
|
blocks=blocks,
|
|
thread_ts=self.thread_ts["ts"],
|
|
)
|
|
|
|
time.sleep(1)
|
|
|
|
for job, job_result in self.additional_results.items():
|
|
if len(job_result["failures"]):
|
|
for device, failures in job_result["failures"].items():
|
|
blocks = self.get_reply_blocks(
|
|
job,
|
|
job_result,
|
|
failures,
|
|
device,
|
|
text=f'Number of failures: {job_result["failed"][device]}',
|
|
)
|
|
|
|
print("Sending the following reply")
|
|
print(json.dumps({"blocks": blocks}))
|
|
|
|
client.chat_postMessage(
|
|
channel=SLACK_REPORT_CHANNEL_ID,
|
|
text=f"Results for {job}",
|
|
blocks=blocks,
|
|
thread_ts=self.thread_ts["ts"],
|
|
)
|
|
|
|
time.sleep(1)
|
|
|
|
blocks = self.get_new_model_failure_blocks()
|
|
if blocks:
|
|
print("Sending the following reply")
|
|
print(json.dumps({"blocks": blocks}))
|
|
|
|
client.chat_postMessage(
|
|
channel=SLACK_REPORT_CHANNEL_ID,
|
|
text="Results for new failures",
|
|
blocks=blocks,
|
|
thread_ts=self.thread_ts["ts"],
|
|
)
|
|
|
|
time.sleep(1)
|
|
|
|
# To save the list of new model failures
|
|
blocks = self.get_new_model_failure_blocks(to_truncate=False)
|
|
failure_text = blocks[-1]["text"]["text"]
|
|
file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/new_model_failures.txt")
|
|
with open(file_path, "w", encoding="UTF-8") as fp:
|
|
fp.write(failure_text)
|
|
|
|
|
|
def retrieve_artifact(artifact_path: str, gpu: Optional[str]):
|
|
if gpu not in [None, "single", "multi"]:
|
|
raise ValueError(f"Invalid GPU for artifact. Passed GPU: `{gpu}`.")
|
|
|
|
_artifact = {}
|
|
|
|
if os.path.exists(artifact_path):
|
|
files = os.listdir(artifact_path)
|
|
for file in files:
|
|
try:
|
|
with open(os.path.join(artifact_path, file)) as f:
|
|
_artifact[file.split(".")[0]] = f.read()
|
|
except UnicodeDecodeError as e:
|
|
raise ValueError(f"Could not open {os.path.join(artifact_path, file)}.") from e
|
|
|
|
return _artifact
|
|
|
|
|
|
def retrieve_available_artifacts():
|
|
class Artifact:
|
|
def __init__(self, name: str, single_gpu: bool = False, multi_gpu: bool = False):
|
|
self.name = name
|
|
self.single_gpu = single_gpu
|
|
self.multi_gpu = multi_gpu
|
|
self.paths = []
|
|
|
|
def __str__(self):
|
|
return self.name
|
|
|
|
def add_path(self, path: str, gpu: str = None):
|
|
self.paths.append({"name": self.name, "path": path, "gpu": gpu})
|
|
|
|
_available_artifacts: Dict[str, Artifact] = {}
|
|
|
|
directories = filter(os.path.isdir, os.listdir())
|
|
for directory in directories:
|
|
artifact_name = directory
|
|
|
|
name_parts = artifact_name.split("_postfix_")
|
|
if len(name_parts) > 1:
|
|
artifact_name = name_parts[0]
|
|
|
|
if artifact_name.startswith("single-gpu"):
|
|
artifact_name = artifact_name[len("single-gpu") + 1 :]
|
|
|
|
if artifact_name in _available_artifacts:
|
|
_available_artifacts[artifact_name].single_gpu = True
|
|
else:
|
|
_available_artifacts[artifact_name] = Artifact(artifact_name, single_gpu=True)
|
|
|
|
_available_artifacts[artifact_name].add_path(directory, gpu="single")
|
|
|
|
elif artifact_name.startswith("multi-gpu"):
|
|
artifact_name = artifact_name[len("multi-gpu") + 1 :]
|
|
|
|
if artifact_name in _available_artifacts:
|
|
_available_artifacts[artifact_name].multi_gpu = True
|
|
else:
|
|
_available_artifacts[artifact_name] = Artifact(artifact_name, multi_gpu=True)
|
|
|
|
_available_artifacts[artifact_name].add_path(directory, gpu="multi")
|
|
else:
|
|
if artifact_name not in _available_artifacts:
|
|
_available_artifacts[artifact_name] = Artifact(artifact_name)
|
|
|
|
_available_artifacts[artifact_name].add_path(directory)
|
|
|
|
return _available_artifacts
|
|
|
|
|
|
def prepare_reports(title, header, reports, to_truncate=True):
|
|
report = ""
|
|
|
|
MAX_ERROR_TEXT = 3000 - len("[Truncated]")
|
|
if not to_truncate:
|
|
MAX_ERROR_TEXT = float("inf")
|
|
|
|
if len(reports) > 0:
|
|
# `text` must be less than 3001 characters in Slack SDK
|
|
# keep some room for adding "[Truncated]" when necessary
|
|
|
|
for idx in range(len(reports)):
|
|
_report = header + "\n".join(reports[: idx + 1])
|
|
new_report = f"{title}:\n```\n{_report}\n```\n"
|
|
if len(new_report) > MAX_ERROR_TEXT:
|
|
# `report` here has length <= 3000
|
|
report = report + "[Truncated]"
|
|
break
|
|
report = new_report
|
|
|
|
return report
|
|
|
|
|
|
if __name__ == "__main__":
|
|
SLACK_REPORT_CHANNEL_ID = os.environ["SLACK_REPORT_CHANNEL"]
|
|
|
|
# runner_status = os.environ.get("RUNNER_STATUS")
|
|
# runner_env_status = os.environ.get("RUNNER_ENV_STATUS")
|
|
setup_status = os.environ.get("SETUP_STATUS")
|
|
|
|
# runner_not_available = True if runner_status is not None and runner_status != "success" else False
|
|
# runner_failed = True if runner_env_status is not None and runner_env_status != "success" else False
|
|
# Let's keep the lines regardig runners' status (we might be able to use them again in the future)
|
|
runner_not_available = False
|
|
runner_failed = False
|
|
# Some jobs don't depend (`needs`) on the job `setup`: in this case, the status of the job `setup` is `skipped`.
|
|
setup_failed = False if setup_status in ["skipped", "success"] else True
|
|
|
|
org = "huggingface"
|
|
repo = "transformers"
|
|
repository_full_name = f"{org}/{repo}"
|
|
|
|
# This env. variable is set in workflow file (under the job `send_results`).
|
|
ci_event = os.environ["CI_EVENT"]
|
|
|
|
# To find the PR number in a commit title, for example, `Add AwesomeFormer model (#99999)`
|
|
pr_number_re = re.compile(r"\(#(\d+)\)$")
|
|
|
|
title = f"🤗 Results of the {ci_event} tests."
|
|
# Add Commit/PR title with a link for push CI
|
|
# (check the title in 2 env. variables - depending on the CI is triggered via `push` or `workflow_run` event)
|
|
ci_title_push = os.environ.get("CI_TITLE_PUSH")
|
|
ci_title_workflow_run = os.environ.get("CI_TITLE_WORKFLOW_RUN")
|
|
ci_title = ci_title_push if ci_title_push else ci_title_workflow_run
|
|
|
|
ci_sha = os.environ.get("CI_SHA")
|
|
|
|
ci_url = None
|
|
if ci_sha:
|
|
ci_url = f"https://github.com/{repository_full_name}/commit/{ci_sha}"
|
|
|
|
if ci_title is not None:
|
|
if ci_url is None:
|
|
raise ValueError(
|
|
"When a title is found (`ci_title`), it means a `push` event or a `workflow_run` even (triggered by "
|
|
"another `push` event), and the commit SHA has to be provided in order to create the URL to the "
|
|
"commit page."
|
|
)
|
|
ci_title = ci_title.strip().split("\n")[0].strip()
|
|
|
|
# Retrieve the PR title and author login to complete the report
|
|
commit_number = ci_url.split("/")[-1]
|
|
ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/commits/{commit_number}"
|
|
ci_details = requests.get(ci_detail_url).json()
|
|
ci_author = ci_details["author"]["login"]
|
|
|
|
merged_by = None
|
|
# Find the PR number (if any) and change the url to the actual PR page.
|
|
numbers = pr_number_re.findall(ci_title)
|
|
if len(numbers) > 0:
|
|
pr_number = numbers[0]
|
|
ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/pulls/{pr_number}"
|
|
ci_details = requests.get(ci_detail_url).json()
|
|
|
|
ci_author = ci_details["user"]["login"]
|
|
ci_url = f"https://github.com/{repository_full_name}/pull/{pr_number}"
|
|
|
|
merged_by = ci_details["merged_by"]["login"]
|
|
|
|
if merged_by is None:
|
|
ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author}"
|
|
else:
|
|
ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author} | Merged by: {merged_by}"
|
|
|
|
elif ci_sha:
|
|
ci_title = f"<{ci_url}|commit: {ci_sha}>"
|
|
|
|
else:
|
|
ci_title = ""
|
|
|
|
if runner_not_available or runner_failed or setup_failed:
|
|
Message.error_out(title, ci_title, runner_not_available, runner_failed, setup_failed)
|
|
exit(0)
|
|
|
|
# sys.argv[0] is always `utils/notification_service.py`.
|
|
arguments = sys.argv[1:]
|
|
# In our usage in `.github/workflows/slack-report.yml`, we always pass an argument when calling this script.
|
|
# The argument could be an empty string `""` if a job doesn't depend on the job `setup`.
|
|
if arguments[0] == "":
|
|
models = []
|
|
else:
|
|
model_list_as_str = arguments[0]
|
|
try:
|
|
folder_slices = ast.literal_eval(model_list_as_str)
|
|
# Need to change from elements like `models/bert` to `models_bert` (the ones used as artifact names).
|
|
models = [x.replace("models/", "models_") for folders in folder_slices for x in folders]
|
|
except Exception:
|
|
Message.error_out(title, ci_title)
|
|
raise ValueError("Errored out.")
|
|
|
|
github_actions_jobs = get_jobs(
|
|
workflow_run_id=os.environ["GITHUB_RUN_ID"], token=os.environ["ACCESS_REPO_INFO_TOKEN"]
|
|
)
|
|
github_actions_job_links = {job["name"]: job["html_url"] for job in github_actions_jobs}
|
|
|
|
artifact_name_to_job_map = {}
|
|
for job in github_actions_jobs:
|
|
for step in job["steps"]:
|
|
if step["name"].startswith("Test suite reports artifacts: "):
|
|
artifact_name = step["name"][len("Test suite reports artifacts: ") :]
|
|
artifact_name_to_job_map[artifact_name] = job
|
|
break
|
|
|
|
available_artifacts = retrieve_available_artifacts()
|
|
|
|
modeling_categories = [
|
|
"PyTorch",
|
|
"TensorFlow",
|
|
"Flax",
|
|
"Tokenizers",
|
|
"Pipelines",
|
|
"Trainer",
|
|
"ONNX",
|
|
"Auto",
|
|
"Unclassified",
|
|
]
|
|
|
|
# This dict will contain all the information relative to each model:
|
|
# - Failures: the total, as well as the number of failures per-category defined above
|
|
# - Success: total
|
|
# - Time spent: as a comma-separated list of elapsed time
|
|
# - Failures: as a line-break separated list of errors
|
|
model_results = {
|
|
model: {
|
|
"failed": {m: {"unclassified": 0, "single": 0, "multi": 0} for m in modeling_categories},
|
|
"success": 0,
|
|
"time_spent": "",
|
|
"failures": {},
|
|
"job_link": {},
|
|
}
|
|
for model in models
|
|
if f"run_models_gpu_{model}_test_reports" in available_artifacts
|
|
}
|
|
|
|
unclassified_model_failures = []
|
|
|
|
for model in model_results.keys():
|
|
for artifact_path in available_artifacts[f"run_models_gpu_{model}_test_reports"].paths:
|
|
artifact = retrieve_artifact(artifact_path["path"], artifact_path["gpu"])
|
|
if "stats" in artifact:
|
|
# Link to the GitHub Action job
|
|
job = artifact_name_to_job_map[artifact_path["path"]]
|
|
model_results[model]["job_link"][artifact_path["gpu"]] = job["html_url"]
|
|
failed, success, time_spent = handle_test_results(artifact["stats"])
|
|
model_results[model]["success"] += success
|
|
model_results[model]["time_spent"] += time_spent[1:-1] + ", "
|
|
|
|
stacktraces = handle_stacktraces(artifact["failures_line"])
|
|
|
|
for line in artifact["summary_short"].split("\n"):
|
|
if line.startswith("FAILED "):
|
|
line = line[len("FAILED ") :]
|
|
line = line.split()[0].replace("\n", "")
|
|
|
|
if artifact_path["gpu"] not in model_results[model]["failures"]:
|
|
model_results[model]["failures"][artifact_path["gpu"]] = []
|
|
|
|
model_results[model]["failures"][artifact_path["gpu"]].append(
|
|
{"line": line, "trace": stacktraces.pop(0)}
|
|
)
|
|
|
|
if re.search("test_modeling_tf_", line):
|
|
model_results[model]["failed"]["TensorFlow"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("test_modeling_flax_", line):
|
|
model_results[model]["failed"]["Flax"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("test_modeling", line):
|
|
model_results[model]["failed"]["PyTorch"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("test_tokenization", line):
|
|
model_results[model]["failed"]["Tokenizers"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("test_pipelines", line):
|
|
model_results[model]["failed"]["Pipelines"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("test_trainer", line):
|
|
model_results[model]["failed"]["Trainer"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("onnx", line):
|
|
model_results[model]["failed"]["ONNX"][artifact_path["gpu"]] += 1
|
|
|
|
elif re.search("auto", line):
|
|
model_results[model]["failed"]["Auto"][artifact_path["gpu"]] += 1
|
|
|
|
else:
|
|
model_results[model]["failed"]["Unclassified"][artifact_path["gpu"]] += 1
|
|
unclassified_model_failures.append(line)
|
|
|
|
# Additional runs
|
|
additional_files = {
|
|
"PyTorch pipelines": "run_pipelines_torch_gpu_test_reports",
|
|
"TensorFlow pipelines": "run_pipelines_tf_gpu_test_reports",
|
|
"Examples directory": "run_examples_gpu_test_reports",
|
|
"Torch CUDA extension tests": "run_torch_cuda_extensions_gpu_test_reports",
|
|
}
|
|
|
|
if ci_event in ["push", "Nightly CI"] or ci_event.startswith("Past CI"):
|
|
del additional_files["Examples directory"]
|
|
del additional_files["PyTorch pipelines"]
|
|
del additional_files["TensorFlow pipelines"]
|
|
elif ci_event.startswith("Scheduled CI (AMD)"):
|
|
del additional_files["TensorFlow pipelines"]
|
|
del additional_files["Torch CUDA extension tests"]
|
|
elif ci_event.startswith("Push CI (AMD)"):
|
|
additional_files = {}
|
|
|
|
# A map associating the job names (specified by `inputs.job` in a workflow file) with the keys of
|
|
# `additional_files`. This is used to remove some entries in `additional_files` that are not concerned by a
|
|
# specific job. See below.
|
|
job_to_test_map = {
|
|
"run_pipelines_torch_gpu": "PyTorch pipelines",
|
|
"run_pipelines_tf_gpu": "TensorFlow pipelines",
|
|
"run_examples_gpu": "Examples directory",
|
|
"run_torch_cuda_extensions_gpu": "Torch CUDA extension tests",
|
|
}
|
|
|
|
# Remove some entries in `additional_files` if they are not concerned.
|
|
test_name = None
|
|
job_name = os.getenv("CI_TEST_JOB")
|
|
if job_name in job_to_test_map:
|
|
test_name = job_to_test_map[job_name]
|
|
additional_files = {k: v for k, v in additional_files.items() if k == test_name}
|
|
|
|
additional_results = {
|
|
key: {
|
|
"failed": {"unclassified": 0, "single": 0, "multi": 0},
|
|
"success": 0,
|
|
"time_spent": "",
|
|
"error": False,
|
|
"failures": {},
|
|
"job_link": {},
|
|
}
|
|
for key in additional_files.keys()
|
|
}
|
|
|
|
for key in additional_results.keys():
|
|
# If a whole suite of test fails, the artifact isn't available.
|
|
if additional_files[key] not in available_artifacts:
|
|
additional_results[key]["error"] = True
|
|
continue
|
|
|
|
for artifact_path in available_artifacts[additional_files[key]].paths:
|
|
# Link to the GitHub Action job
|
|
job = artifact_name_to_job_map[artifact_path["path"]]
|
|
additional_results[key]["job_link"][artifact_path["gpu"]] = job["html_url"]
|
|
|
|
artifact = retrieve_artifact(artifact_path["path"], artifact_path["gpu"])
|
|
stacktraces = handle_stacktraces(artifact["failures_line"])
|
|
|
|
failed, success, time_spent = handle_test_results(artifact["stats"])
|
|
additional_results[key]["failed"][artifact_path["gpu"] or "unclassified"] += failed
|
|
additional_results[key]["success"] += success
|
|
additional_results[key]["time_spent"] += time_spent[1:-1] + ", "
|
|
|
|
if len(artifact["errors"]):
|
|
additional_results[key]["error"] = True
|
|
|
|
if failed:
|
|
for line in artifact["summary_short"].split("\n"):
|
|
if line.startswith("FAILED "):
|
|
line = line[len("FAILED ") :]
|
|
line = line.split()[0].replace("\n", "")
|
|
|
|
if artifact_path["gpu"] not in additional_results[key]["failures"]:
|
|
additional_results[key]["failures"][artifact_path["gpu"]] = []
|
|
|
|
additional_results[key]["failures"][artifact_path["gpu"]].append(
|
|
{"line": line, "trace": stacktraces.pop(0)}
|
|
)
|
|
|
|
# Let's only check the warning for the model testing job. Currently, the job `run_extract_warnings` is only run
|
|
# when `inputs.job` (in the workflow file) is `run_models_gpu`. The reason is: otherwise we need to save several
|
|
# artifacts with different names which complicates the logic for an insignificant part of the CI workflow reporting.
|
|
selected_warnings = []
|
|
if job_name == "run_models_gpu":
|
|
if "warnings_in_ci" in available_artifacts:
|
|
directory = available_artifacts["warnings_in_ci"].paths[0]["path"]
|
|
with open(os.path.join(directory, "selected_warnings.json")) as fp:
|
|
selected_warnings = json.load(fp)
|
|
|
|
if not os.path.isdir(os.path.join(os.getcwd(), f"ci_results_{job_name}")):
|
|
os.makedirs(os.path.join(os.getcwd(), f"ci_results_{job_name}"))
|
|
|
|
target_workflow = "huggingface/transformers/.github/workflows/self-scheduled-caller.yml@refs/heads/main"
|
|
is_scheduled_ci_run = os.environ.get("CI_WORKFLOW_REF") == target_workflow
|
|
|
|
# Only the model testing job is concerned: this condition is to avoid other jobs to upload the empty list as
|
|
# results.
|
|
if job_name == "run_models_gpu":
|
|
with open(f"ci_results_{job_name}/model_results.json", "w", encoding="UTF-8") as fp:
|
|
json.dump(model_results, fp, indent=4, ensure_ascii=False)
|
|
|
|
# upload results to Hub dataset (only for the scheduled daily CI run on `main`)
|
|
if is_scheduled_ci_run:
|
|
api.upload_file(
|
|
path_or_fileobj=f"ci_results_{job_name}/model_results.json",
|
|
path_in_repo=f"{datetime.datetime.today().strftime('%Y-%m-%d')}/ci_results_{job_name}/model_results.json",
|
|
repo_id="hf-internal-testing/transformers_daily_ci",
|
|
repo_type="dataset",
|
|
token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None),
|
|
)
|
|
|
|
# Must have the same keys as in `additional_results`.
|
|
# The values are used as the file names where to save the corresponding CI job results.
|
|
test_to_result_name = {
|
|
"PyTorch pipelines": "torch_pipeline",
|
|
"TensorFlow pipelines": "tf_pipeline",
|
|
"Examples directory": "example",
|
|
"Torch CUDA extension tests": "deepspeed",
|
|
}
|
|
for job, job_result in additional_results.items():
|
|
with open(f"ci_results_{job_name}/{test_to_result_name[job]}_results.json", "w", encoding="UTF-8") as fp:
|
|
json.dump(job_result, fp, indent=4, ensure_ascii=False)
|
|
|
|
# upload results to Hub dataset (only for the scheduled daily CI run on `main`)
|
|
if is_scheduled_ci_run:
|
|
api.upload_file(
|
|
path_or_fileobj=f"ci_results_{job_name}/{test_to_result_name[job]}_results.json",
|
|
path_in_repo=f"{datetime.datetime.today().strftime('%Y-%m-%d')}/ci_results_{job_name}/{test_to_result_name[job]}_results.json",
|
|
repo_id="hf-internal-testing/transformers_daily_ci",
|
|
repo_type="dataset",
|
|
token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None),
|
|
)
|
|
|
|
prev_ci_artifacts = None
|
|
if is_scheduled_ci_run:
|
|
if job_name == "run_models_gpu":
|
|
# Get the last previously completed CI's failure tables
|
|
artifact_names = [f"ci_results_{job_name}"]
|
|
output_dir = os.path.join(os.getcwd(), "previous_reports")
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
prev_ci_artifacts = get_last_daily_ci_reports(
|
|
artifact_names=artifact_names, output_dir=output_dir, token=os.environ["ACCESS_REPO_INFO_TOKEN"]
|
|
)
|
|
|
|
message = Message(
|
|
title,
|
|
ci_title,
|
|
model_results,
|
|
additional_results,
|
|
selected_warnings=selected_warnings,
|
|
prev_ci_artifacts=prev_ci_artifacts,
|
|
)
|
|
|
|
# send report only if there is any failure (for push CI)
|
|
if message.n_failures or (ci_event != "push" and not ci_event.startswith("Push CI (AMD)")):
|
|
message.post()
|
|
message.post_reply()
|