168 lines
5.3 KiB
Python
Executable File
168 lines
5.3 KiB
Python
Executable File
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
|
|
from transformers.testing_utils import (
|
|
require_accelerate,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_hqq_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_hqq_available():
|
|
from hqq.core.quantize import HQQBackend, HQQLinear
|
|
|
|
|
|
class HQQLLMRunner:
|
|
def __init__(self, model_id, quant_config, compute_dtype, device, cache_dir=None):
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
torch_dtype=compute_dtype,
|
|
device_map=device,
|
|
quantization_config=quant_config,
|
|
low_cpu_mem_usage=True,
|
|
cache_dir=cache_dir,
|
|
)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=cache_dir)
|
|
self.device = self.model.device
|
|
HQQLinear.set_backend(HQQBackend.PYTORCH)
|
|
|
|
|
|
def cleanup():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
def check_hqqlayer(test_module, hqq_layer, batch_size=1, context_size=1024):
|
|
# Test HQQ layer
|
|
W_dequant = hqq_layer.dequantize() # Reconstructed weights
|
|
inputs = (
|
|
torch.randn(
|
|
(batch_size, context_size, hqq_layer.meta["shape"][1]),
|
|
device=hqq_layer.device,
|
|
dtype=hqq_layer.compute_dtype,
|
|
)
|
|
/ 10.0
|
|
)
|
|
with torch.no_grad():
|
|
outputs = hqq_layer(inputs)
|
|
test_module.assertEqual(outputs.shape[-1], W_dequant.shape[0])
|
|
test_module.assertEqual(outputs.dtype, hqq_layer.compute_dtype)
|
|
del W_dequant, inputs, outputs
|
|
cleanup()
|
|
|
|
|
|
def check_forward(test_module, model, batch_size=1, context_size=1024):
|
|
# Test forward pass
|
|
with torch.no_grad():
|
|
out = model(torch.zeros([batch_size, context_size], device=model.device, dtype=torch.int32)).logits
|
|
test_module.assertEqual(out.shape[0], batch_size)
|
|
test_module.assertEqual(out.shape[1], context_size)
|
|
cleanup()
|
|
|
|
|
|
MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
|
|
|
@require_torch_gpu
|
|
class HqqConfigTest(unittest.TestCase):
|
|
def test_to_dict(self):
|
|
"""
|
|
Makes sure the config format is properly set
|
|
"""
|
|
quantization_config = HqqConfig()
|
|
hqq_orig_config = quantization_config.to_dict()
|
|
|
|
for key in hqq_orig_config:
|
|
self.assertEqual(quantization_config.quant_config[key], hqq_orig_config[key])
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_accelerate
|
|
class HQQTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
cleanup()
|
|
|
|
def test_fp16_quantized_model(self):
|
|
"""
|
|
Simple LLM model testing fp16
|
|
"""
|
|
quant_config = HqqConfig(nbits=8, group_size=64, quant_zero=False, quant_scale=False, axis=0)
|
|
|
|
hqq_runner = HQQLLMRunner(
|
|
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
|
|
)
|
|
|
|
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
|
|
check_forward(self, hqq_runner.model)
|
|
|
|
def test_f16_quantized_model_with_offloading(self):
|
|
"""
|
|
Simple LLM model testing bfp16 with meta-data offloading
|
|
"""
|
|
q4_config = {"nbits": 4, "group_size": 64, "quant_zero": False, "quant_scale": False}
|
|
q3_config = {"nbits": 3, "group_size": 32, "quant_zero": False, "quant_scale": False, "offload_meta": True}
|
|
quant_config = HqqConfig(
|
|
dynamic_config={
|
|
"self_attn.q_proj": q4_config,
|
|
"self_attn.k_proj": q4_config,
|
|
"self_attn.v_proj": q4_config,
|
|
"self_attn.o_proj": q4_config,
|
|
"mlp.gate_proj": q3_config,
|
|
"mlp.up_proj": q3_config,
|
|
"mlp.down_proj": q3_config,
|
|
}
|
|
)
|
|
|
|
hqq_runner = HQQLLMRunner(
|
|
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
|
|
)
|
|
|
|
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
|
|
check_forward(self, hqq_runner.model)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_torch_multi_gpu
|
|
@require_accelerate
|
|
class HQQTestMultiGPU(unittest.TestCase):
|
|
def tearDown(self):
|
|
cleanup()
|
|
|
|
def test_fp16_quantized_model_multipgpu(self):
|
|
"""
|
|
Simple LLM model testing fp16 with multi-gpu
|
|
"""
|
|
|
|
quant_config = HqqConfig(nbits=8, group_size=64, quant_zero=False, quant_scale=False, axis=0)
|
|
|
|
hqq_runner = HQQLLMRunner(
|
|
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device="auto"
|
|
)
|
|
|
|
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
|
|
check_forward(self, hqq_runner.model)
|