675 lines
28 KiB
Python
675 lines
28 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
from transformers import XLMRobertaTokenizer, is_torch_available
|
|
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
XmodConfig,
|
|
XmodForCausalLM,
|
|
XmodForMaskedLM,
|
|
XmodForMultipleChoice,
|
|
XmodForQuestionAnswering,
|
|
XmodForSequenceClassification,
|
|
XmodForTokenClassification,
|
|
XmodModel,
|
|
)
|
|
from transformers.models.xmod.modeling_xmod import XmodEmbeddings, create_position_ids_from_input_ids
|
|
|
|
|
|
class XmodModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return XmodConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
default_language="en_XX",
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
config.is_decoder = True
|
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = XmodModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
result = model(input_ids, token_type_ids=token_type_ids)
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_model_as_decoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.add_cross_attention = True
|
|
model = XmodModel(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_for_causal_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = XmodForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.is_decoder = True
|
|
config.add_cross_attention = True
|
|
model = XmodForCausalLM(config=config).to(torch_device).eval()
|
|
|
|
# make sure that ids don't start with pad token
|
|
mask = input_ids.ne(config.pad_token_id).long()
|
|
input_ids = input_ids * mask
|
|
|
|
# first forward pass
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
|
|
# make sure that ids don't start with pad token
|
|
mask = next_tokens.ne(config.pad_token_id).long()
|
|
next_tokens = next_tokens * mask
|
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = XmodForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = XmodForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_for_multiple_choice(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = XmodForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
result = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
token_type_ids=multiple_choice_token_type_ids,
|
|
labels=choice_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = XmodForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class XmodModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
XmodForCausalLM,
|
|
XmodForMaskedLM,
|
|
XmodModel,
|
|
XmodForSequenceClassification,
|
|
XmodForTokenClassification,
|
|
XmodForMultipleChoice,
|
|
XmodForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (XmodForCausalLM,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": XmodModel,
|
|
"fill-mask": XmodForMaskedLM,
|
|
"question-answering": XmodForQuestionAnswering,
|
|
"text-classification": XmodForSequenceClassification,
|
|
"text-generation": XmodForCausalLM,
|
|
"token-classification": XmodForTokenClassification,
|
|
"zero-shot": XmodForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
# TODO: Fix the failed tests
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
|
|
return True
|
|
|
|
return False
|
|
|
|
def setUp(self):
|
|
self.model_tester = XmodModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XmodConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_as_decoder(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
|
|
|
|
def test_model_as_decoder_with_default_input_mask(self):
|
|
# This regression test was failing with PyTorch < 1.3
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
) = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
|
|
input_mask = None
|
|
|
|
self.model_tester.create_and_check_model_as_decoder(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
|
|
def test_for_causal_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
|
|
|
|
def test_decoder_model_past_with_large_inputs(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
config_and_inputs[0].position_embedding_type = "relative_key"
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
def test_create_position_ids_respects_padding_index(self):
|
|
"""Ensure that the default position ids only assign a sequential . This is a regression
|
|
test for https://github.com/huggingface/transformers/issues/1761
|
|
|
|
The position ids should be masked with the embedding object's padding index. Therefore, the
|
|
first available non-padding position index is XmodEmbeddings.padding_idx + 1
|
|
"""
|
|
config = self.model_tester.prepare_config_and_inputs()[0]
|
|
model = XmodEmbeddings(config=config)
|
|
|
|
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
|
|
expected_positions = torch.as_tensor(
|
|
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
|
|
)
|
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
|
|
self.assertEqual(position_ids.shape, expected_positions.shape)
|
|
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
|
|
|
|
def test_create_position_ids_from_inputs_embeds(self):
|
|
"""Ensure that the default position ids only assign a sequential . This is a regression
|
|
test for https://github.com/huggingface/transformers/issues/1761
|
|
|
|
The position ids should be masked with the embedding object's padding index. Therefore, the
|
|
first available non-padding position index is XmodEmbeddings.padding_idx + 1
|
|
"""
|
|
config = self.model_tester.prepare_config_and_inputs()[0]
|
|
embeddings = XmodEmbeddings(config=config)
|
|
|
|
inputs_embeds = torch.empty(2, 4, 30)
|
|
expected_single_positions = [
|
|
0 + embeddings.padding_idx + 1,
|
|
1 + embeddings.padding_idx + 1,
|
|
2 + embeddings.padding_idx + 1,
|
|
3 + embeddings.padding_idx + 1,
|
|
]
|
|
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
|
|
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
|
|
self.assertEqual(position_ids.shape, expected_positions.shape)
|
|
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
|
|
|
|
def test_set_default_language(self):
|
|
config = self.model_tester.prepare_config_and_inputs()[0]
|
|
model = XmodForMaskedLM(config=config)
|
|
model.set_default_language("en_XX")
|
|
self.assertEqual(model.config.default_language, "en_XX")
|
|
with self.assertRaises(ValueError):
|
|
model.set_default_language("xx_XX")
|
|
|
|
def test_freeze_embeddings_and_language_adapters(self):
|
|
config = self.model_tester.prepare_config_and_inputs()[0]
|
|
model = XmodForMaskedLM(config=config)
|
|
num_trainable_params_before = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
model.freeze_embeddings_and_language_adapters()
|
|
num_trainable_params_after = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
self.assertLess(num_trainable_params_after, num_trainable_params_before)
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
@require_torch
|
|
class XmodModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_xmod_base(self):
|
|
model = XmodModel.from_pretrained("facebook/xmod-base")
|
|
|
|
# language en_XX
|
|
model.set_default_language("en_XX")
|
|
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
|
|
# The dog is cute and lives in the garden house
|
|
expected_output_shape = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
|
|
expected_output_values_last_dim = torch.tensor(
|
|
[[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724]]
|
|
)
|
|
output = model(input_ids)["last_hidden_state"].detach()
|
|
self.assertEqual(output.shape, expected_output_shape)
|
|
# compare the actual values for a slice of last dim
|
|
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
|
|
|
|
# language de_DE
|
|
model.set_default_language("de_DE")
|
|
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]])
|
|
# Der Hund ist niedlich und wohnt in einem Gartenhaus.
|
|
expected_output_shape = torch.Size((1, 16, 768)) # batch_size, sequence_length, embedding_vector_dim
|
|
# fmt: off
|
|
expected_output_values_last_dim = torch.tensor(
|
|
[[0.0162, 0.0075, -0.1882, 0.2335, -0.0952, -0.3994, -0.0317, -0.1174, 0.0177, 0.4280, -0.0240, -0.2138,
|
|
0.0785, -0.1045, -0.2811, -0.3220]]
|
|
)
|
|
# fmt: on
|
|
output = model(input_ids)["last_hidden_state"].detach()
|
|
self.assertEqual(output.shape, expected_output_shape)
|
|
# compare the actual values for a slice of last dim
|
|
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
|
|
|
|
@slow
|
|
def test_xmod_large_prenorm(self):
|
|
model = XmodModel.from_pretrained("facebook/xmod-large-prenorm")
|
|
|
|
# language en_XX
|
|
model.set_default_language("en_XX")
|
|
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
|
|
# The dog is cute and lives in the garden house
|
|
expected_output_shape = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
|
|
# fmt: off
|
|
expected_output_values_last_dim = torch.tensor(
|
|
[[-0.0121, -0.0194, -0.0240, -0.0160, -0.0205, -0.0159, -0.0243, -0.0206, -0.0161, -0.0335, -0.0196,
|
|
-0.0141]]
|
|
)
|
|
# fmt: on
|
|
output = model(input_ids)["last_hidden_state"].detach()
|
|
self.assertEqual(output.shape, expected_output_shape)
|
|
# compare the actual values for a slice of last dim
|
|
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
|
|
|
|
# language de_DE
|
|
model.set_default_language("de_DE")
|
|
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]])
|
|
# Der Hund ist niedlich und wohnt in einem Gartenhaus.
|
|
expected_output_shape = torch.Size((1, 16, 1024)) # batch_size, sequence_length, embedding_vector_dim
|
|
# fmt: off
|
|
expected_output_values_last_dim = torch.tensor(
|
|
[[-0.0120, -0.0262, -0.0253, -0.0112, -0.0128, -0.0164, -0.0080, -0.0081, -0.0192, -0.0117, -0.0170,
|
|
-0.0120, -0.0210, -0.0173, -0.0078, -0.0122]]
|
|
)
|
|
# fmt: on
|
|
output = model(input_ids)["last_hidden_state"].detach()
|
|
self.assertEqual(output.shape, expected_output_shape)
|
|
# compare the actual values for a slice of last dim
|
|
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
|
|
|
|
@slow
|
|
def test_multilingual_batch(self):
|
|
model = XmodModel.from_pretrained("facebook/xmod-base")
|
|
# fmt: off
|
|
input_ids = torch.tensor([
|
|
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
|
|
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
|
|
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
|
|
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
|
|
])
|
|
# fmt: on
|
|
lang_ids = torch.LongTensor([0, 8, 8, 0])
|
|
expected_output_shape = torch.Size((4, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
|
|
# fmt: off
|
|
expected_output_values_last_dim = torch.tensor([
|
|
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724],
|
|
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407],
|
|
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407],
|
|
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724],
|
|
])
|
|
# fmt: on
|
|
output = model(input_ids, lang_ids=lang_ids)["last_hidden_state"].detach()
|
|
self.assertEqual(output.shape, expected_output_shape)
|
|
# compare the actual values for a slice of last dim
|
|
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
|
|
|
|
@slow
|
|
def test_end_to_end_mask_fill(self):
|
|
tokenizer = XLMRobertaTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
|
|
model = XmodForMaskedLM.from_pretrained("facebook/xmod-base", default_language="en_XX")
|
|
model.to(torch_device)
|
|
|
|
sentences = [
|
|
"Hello, my dog is a little <mask>.",
|
|
"Hi <mask>!",
|
|
]
|
|
|
|
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
|
|
input_ids = inputs["input_ids"].to(torch_device)
|
|
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
attention_mask=inputs["attention_mask"].to(torch_device),
|
|
)
|
|
probs = outputs.logits.softmax(dim=-1)
|
|
_, predictions = probs.topk(1)
|
|
predictions = predictions.squeeze(-1)
|
|
|
|
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
|
|
output_non_padded = model(input_ids=inputs_non_padded)
|
|
probs_non_padded = output_non_padded.logits.softmax(dim=-1)
|
|
_, predictions_non_padded = probs_non_padded.topk(1)
|
|
predictions_non_padded = predictions_non_padded.squeeze(-1)
|
|
|
|
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
|
|
output_padded = model(input_ids=inputs_padded)
|
|
probs_padded = output_padded.logits.softmax(dim=-1)
|
|
_, predictions_padded = probs_padded.topk(1)
|
|
predictions_padded = predictions_padded.squeeze(-1)
|
|
|
|
batch_out_sentence = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
|
non_padded_sentence = tokenizer.decode(predictions_non_padded[0], skip_special_tokens=True)
|
|
padded_sentence = tokenizer.decode(predictions_padded[0], skip_special_tokens=True)
|
|
|
|
expected_output_sentence = [
|
|
"Hello, my dog is a little girl.",
|
|
"Hi everyone!",
|
|
]
|
|
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
|
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
|