99 lines
3.3 KiB
Python
99 lines
3.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
|
|
from transformers.testing_utils import slow
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
class XLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "FacebookAI/xlm-mlm-en-2048"
|
|
tokenizer_class = XLMTokenizer
|
|
test_rust_tokenizer = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"w</w>",
|
|
"r</w>",
|
|
"t</w>",
|
|
"lo",
|
|
"low",
|
|
"er</w>",
|
|
"low</w>",
|
|
"lowest</w>",
|
|
"newer</w>",
|
|
"wider</w>",
|
|
"<unk>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w") as fp:
|
|
fp.write(json.dumps(vocab_tokens))
|
|
with open(self.merges_file, "w") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer"
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
"""Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt"""
|
|
tokenizer = XLMTokenizer(self.vocab_file, self.merges_file)
|
|
|
|
text = "lower"
|
|
bpe_tokens = ["low", "er</w>"]
|
|
tokens = tokenizer.tokenize(text)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + ["<unk>"]
|
|
input_bpe_tokens = [14, 15, 20]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == [0] + text + [1]
|
|
assert encoded_pair == [0] + text + [1] + text_2 + [1]
|