553 lines
20 KiB
Python
553 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import XLMConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
XLMForMultipleChoice,
|
|
XLMForQuestionAnswering,
|
|
XLMForQuestionAnsweringSimple,
|
|
XLMForSequenceClassification,
|
|
XLMForTokenClassification,
|
|
XLMModel,
|
|
XLMWithLMHeadModel,
|
|
)
|
|
from transformers.models.xlm.modeling_xlm import create_sinusoidal_embeddings
|
|
|
|
|
|
class XLMModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_lengths=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
gelu_activation=True,
|
|
sinusoidal_embeddings=False,
|
|
causal=False,
|
|
asm=False,
|
|
n_langs=2,
|
|
vocab_size=99,
|
|
n_special=0,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=2,
|
|
num_choices=4,
|
|
summary_type="last",
|
|
use_proj=True,
|
|
scope=None,
|
|
bos_token_id=0,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_lengths = use_input_lengths
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.gelu_activation = gelu_activation
|
|
self.sinusoidal_embeddings = sinusoidal_embeddings
|
|
self.causal = causal
|
|
self.asm = asm
|
|
self.n_langs = n_langs
|
|
self.vocab_size = vocab_size
|
|
self.n_special = n_special
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.summary_type = summary_type
|
|
self.use_proj = use_proj
|
|
self.scope = scope
|
|
self.bos_token_id = bos_token_id
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
input_lengths = None
|
|
if self.use_input_lengths:
|
|
input_lengths = (
|
|
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
|
|
) # small variation of seq_length
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
is_impossible_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
)
|
|
|
|
def get_config(self):
|
|
return XLMConfig(
|
|
vocab_size=self.vocab_size,
|
|
n_special=self.n_special,
|
|
emb_dim=self.hidden_size,
|
|
n_layers=self.num_hidden_layers,
|
|
n_heads=self.num_attention_heads,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
gelu_activation=self.gelu_activation,
|
|
sinusoidal_embeddings=self.sinusoidal_embeddings,
|
|
asm=self.asm,
|
|
causal=self.causal,
|
|
n_langs=self.n_langs,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
summary_type=self.summary_type,
|
|
use_proj=self.use_proj,
|
|
num_labels=self.num_labels,
|
|
bos_token_id=self.bos_token_id,
|
|
)
|
|
|
|
def create_and_check_xlm_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
|
|
result = model(input_ids, langs=token_type_ids)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_xlm_lm_head(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMWithLMHeadModel(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_xlm_simple_qa(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMForQuestionAnsweringSimple(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
outputs = model(input_ids)
|
|
|
|
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
|
|
result = outputs
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_xlm_qa(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMForQuestionAnswering(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids)
|
|
|
|
result_with_labels = model(
|
|
input_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
cls_index=sequence_labels,
|
|
is_impossible=is_impossible_labels,
|
|
p_mask=input_mask,
|
|
)
|
|
|
|
result_with_labels = model(
|
|
input_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
cls_index=sequence_labels,
|
|
is_impossible=is_impossible_labels,
|
|
)
|
|
|
|
(total_loss,) = result_with_labels.to_tuple()
|
|
|
|
result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
|
|
|
|
(total_loss,) = result_with_labels.to_tuple()
|
|
|
|
self.parent.assertEqual(result_with_labels.loss.shape, ())
|
|
self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
|
|
self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
|
|
self.parent.assertEqual(
|
|
result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
|
|
)
|
|
self.parent.assertEqual(
|
|
result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
|
|
)
|
|
self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
|
|
|
|
def create_and_check_xlm_sequence_classif(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids)
|
|
result = model(input_ids, labels=sequence_labels)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
def create_and_check_xlm_token_classif(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = XLMForTokenClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_xlm_for_multiple_choice(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = XLMForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
result = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
token_type_ids=multiple_choice_token_type_ids,
|
|
labels=choice_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
XLMModel,
|
|
XLMWithLMHeadModel,
|
|
XLMForQuestionAnswering,
|
|
XLMForSequenceClassification,
|
|
XLMForQuestionAnsweringSimple,
|
|
XLMForTokenClassification,
|
|
XLMForMultipleChoice,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (
|
|
(XLMWithLMHeadModel,) if is_torch_available() else ()
|
|
) # TODO (PVP): Check other models whether language generation is also applicable
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": XLMModel,
|
|
"fill-mask": XLMWithLMHeadModel,
|
|
"question-answering": XLMForQuestionAnsweringSimple,
|
|
"text-classification": XLMForSequenceClassification,
|
|
"text-generation": XLMWithLMHeadModel,
|
|
"token-classification": XLMForTokenClassification,
|
|
"zero-shot": XLMForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
# TODO: Fix the failed tests
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
if (
|
|
pipeline_test_casse_name == "QAPipelineTests"
|
|
and tokenizer_name is not None
|
|
and not tokenizer_name.endswith("Fast")
|
|
):
|
|
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
|
|
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
|
|
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
|
|
return True
|
|
|
|
return False
|
|
|
|
# XLM has 2 QA models -> need to manually set the correct labels for one of them here
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
|
|
if return_labels:
|
|
if model_class.__name__ == "XLMForQuestionAnswering":
|
|
inputs_dict["start_positions"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
inputs_dict["end_positions"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
|
|
return inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = XLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_xlm_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_model(*config_and_inputs)
|
|
|
|
# Copied from tests/models/distilbert/test_modeling_distilbert.py with Distilbert->XLM
|
|
def test_xlm_model_with_sinusoidal_encodings(self):
|
|
config = XLMConfig(sinusoidal_embeddings=True)
|
|
model = XLMModel(config=config)
|
|
sinusoidal_pos_embds = torch.empty((config.max_position_embeddings, config.emb_dim), dtype=torch.float32)
|
|
create_sinusoidal_embeddings(config.max_position_embeddings, config.emb_dim, sinusoidal_pos_embds)
|
|
self.model_tester.parent.assertTrue(torch.equal(model.position_embeddings.weight, sinusoidal_pos_embds))
|
|
|
|
def test_xlm_lm_head(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
|
|
|
|
def test_xlm_simple_qa(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)
|
|
|
|
def test_xlm_qa(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
|
|
|
|
def test_xlm_sequence_classif(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
|
|
|
|
def test_xlm_token_classif(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
|
|
|
|
def test_xlm_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)
|
|
|
|
def _check_attentions_for_generate(
|
|
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
|
):
|
|
self.assertIsInstance(attentions, tuple)
|
|
self.assertListEqual(
|
|
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
|
|
)
|
|
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
|
|
|
|
for idx, iter_attentions in enumerate(attentions):
|
|
# adds PAD dummy token
|
|
tgt_len = min_length + idx + 1
|
|
src_len = min_length + idx + 1
|
|
|
|
expected_shape = (
|
|
batch_size * num_beam_groups,
|
|
config.num_attention_heads,
|
|
tgt_len,
|
|
src_len,
|
|
)
|
|
# check attn size
|
|
self.assertListEqual(
|
|
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
|
|
)
|
|
|
|
def _check_hidden_states_for_generate(
|
|
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
|
):
|
|
self.assertIsInstance(hidden_states, tuple)
|
|
self.assertListEqual(
|
|
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
|
|
[True] * len(hidden_states),
|
|
)
|
|
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)
|
|
|
|
for idx, iter_hidden_states in enumerate(hidden_states):
|
|
# adds PAD dummy token
|
|
seq_len = min_length + idx + 1
|
|
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
|
|
# check hidden size
|
|
self.assertListEqual(
|
|
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
|
|
[expected_shape] * len(iter_hidden_states),
|
|
)
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "FacebookAI/xlm-mlm-en-2048"
|
|
model = XLMModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
class XLMModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_xlm_mlm_en_2048(self):
|
|
model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
|
model.to(torch_device)
|
|
input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device) # the president
|
|
expected_output_ids = [
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
] # the president the president the president the president the president the president the president the president the president the president
|
|
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
|
|
output_ids = model.generate(input_ids, do_sample=False)
|
|
self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)
|