607 lines
24 KiB
Python
607 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch WavLM model."""
|
|
|
|
import math
|
|
import unittest
|
|
|
|
import pytest
|
|
from datasets import load_dataset
|
|
|
|
from transformers import WavLMConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
_config_zero_init,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
random_attention_mask,
|
|
)
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Wav2Vec2FeatureExtractor,
|
|
WavLMForAudioFrameClassification,
|
|
WavLMForCTC,
|
|
WavLMForSequenceClassification,
|
|
WavLMForXVector,
|
|
WavLMModel,
|
|
)
|
|
|
|
|
|
class WavLMModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=1024, # speech is longer
|
|
is_training=False,
|
|
hidden_size=16,
|
|
feat_extract_norm="group",
|
|
feat_extract_dropout=0.0,
|
|
feat_extract_activation="gelu",
|
|
conv_dim=(32, 32, 32),
|
|
conv_stride=(4, 4, 4),
|
|
conv_kernel=(8, 8, 8),
|
|
conv_bias=False,
|
|
num_conv_pos_embeddings=16,
|
|
num_conv_pos_embedding_groups=2,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
|
|
intermediate_size=20,
|
|
layer_norm_eps=1e-5,
|
|
hidden_act="gelu",
|
|
initializer_range=0.02,
|
|
vocab_size=32,
|
|
do_stable_layer_norm=False,
|
|
tdnn_dim=(32, 32),
|
|
tdnn_kernel=(3, 3),
|
|
tdnn_dilation=(1, 1),
|
|
xvector_output_dim=32,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.feat_extract_norm = feat_extract_norm
|
|
self.feat_extract_dropout = feat_extract_dropout
|
|
self.feat_extract_activation = feat_extract_activation
|
|
self.conv_dim = conv_dim
|
|
self.conv_stride = conv_stride
|
|
self.conv_kernel = conv_kernel
|
|
self.conv_bias = conv_bias
|
|
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
|
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.intermediate_size = intermediate_size
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.vocab_size = vocab_size
|
|
self.do_stable_layer_norm = do_stable_layer_norm
|
|
self.tdnn_dim = tdnn_dim
|
|
self.tdnn_kernel = tdnn_kernel
|
|
self.tdnn_dilation = tdnn_dilation
|
|
self.xvector_output_dim = xvector_output_dim
|
|
self.scope = scope
|
|
|
|
output_seq_length = self.seq_length
|
|
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
|
|
output_seq_length = (output_seq_length - (kernel - 1)) / stride
|
|
self.output_seq_length = int(math.ceil(output_seq_length))
|
|
self.encoder_seq_length = self.output_seq_length
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
|
|
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_values, attention_mask
|
|
|
|
def get_config(self):
|
|
return WavLMConfig(
|
|
hidden_size=self.hidden_size,
|
|
feat_extract_norm=self.feat_extract_norm,
|
|
feat_extract_dropout=self.feat_extract_dropout,
|
|
feat_extract_activation=self.feat_extract_activation,
|
|
conv_dim=self.conv_dim,
|
|
conv_stride=self.conv_stride,
|
|
conv_kernel=self.conv_kernel,
|
|
conv_bias=self.conv_bias,
|
|
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
|
|
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
intermediate_size=self.intermediate_size,
|
|
layer_norm_eps=self.layer_norm_eps,
|
|
hidden_act=self.hidden_act,
|
|
initializer_range=self.initializer_range,
|
|
vocab_size=self.vocab_size,
|
|
tdnn_dim=self.tdnn_dim,
|
|
tdnn_kernel=self.tdnn_kernel,
|
|
tdnn_dilation=self.tdnn_dilation,
|
|
xvector_output_dim=self.xvector_output_dim,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_values, attention_mask):
|
|
model = WavLMModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_values, attention_mask=attention_mask)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
|
)
|
|
|
|
def create_and_check_batch_inference(self, config, input_values, *args):
|
|
# test does not pass for models making use of `group_norm`
|
|
# check: https://github.com/pytorch/fairseq/issues/3227
|
|
model = WavLMModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
input_values = input_values[:3]
|
|
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
attention_mask[i, input_lengths[i] :] = 0.0
|
|
|
|
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
|
|
|
for i in range(input_values.shape[0]):
|
|
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
|
output = model(input_slice).last_hidden_state
|
|
|
|
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
|
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
|
|
|
def check_ctc_loss(self, config, input_values, *args):
|
|
model = WavLMForCTC(config=config)
|
|
model.to(torch_device)
|
|
|
|
# make sure that dropout is disabled
|
|
model.eval()
|
|
|
|
input_values = input_values[:3]
|
|
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
|
|
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
attention_mask[i, input_lengths[i] :] = 0
|
|
|
|
model.config.ctc_loss_reduction = "sum"
|
|
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
|
|
|
|
model.config.ctc_loss_reduction = "mean"
|
|
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
|
|
|
|
self.parent.assertTrue(isinstance(sum_loss, float))
|
|
self.parent.assertTrue(isinstance(mean_loss, float))
|
|
|
|
def check_seq_classifier_loss(self, config, input_values, *args):
|
|
model = WavLMForSequenceClassification(config=config)
|
|
model.to(torch_device)
|
|
|
|
# make sure that dropout is disabled
|
|
model.eval()
|
|
|
|
input_values = input_values[:3]
|
|
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
attention_mask[i, input_lengths[i] :] = 0
|
|
|
|
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
|
|
unmasked_loss = model(input_values, labels=labels).loss.item()
|
|
|
|
self.parent.assertTrue(isinstance(masked_loss, float))
|
|
self.parent.assertTrue(isinstance(unmasked_loss, float))
|
|
self.parent.assertTrue(masked_loss != unmasked_loss)
|
|
|
|
def check_ctc_training(self, config, input_values, *args):
|
|
config.ctc_zero_infinity = True
|
|
model = WavLMForCTC(config=config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
# freeze feature encoder
|
|
model.freeze_feature_encoder()
|
|
|
|
input_values = input_values[:3]
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
|
|
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
|
|
if max_length_labels[i] < labels.shape[-1]:
|
|
# it's important that we make sure that target lengths are at least
|
|
# one shorter than logit lengths to prevent -inf
|
|
labels[i, max_length_labels[i] - 1 :] = -100
|
|
|
|
loss = model(input_values, labels=labels).loss
|
|
self.parent.assertFalse(torch.isinf(loss).item())
|
|
|
|
loss.backward()
|
|
|
|
def check_seq_classifier_training(self, config, input_values, *args):
|
|
config.ctc_zero_infinity = True
|
|
model = WavLMForSequenceClassification(config=config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
# freeze everything but the classification head
|
|
model.freeze_base_model()
|
|
|
|
input_values = input_values[:3]
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
|
|
loss = model(input_values, labels=labels).loss
|
|
self.parent.assertFalse(torch.isinf(loss).item())
|
|
|
|
loss.backward()
|
|
|
|
def check_output_attentions(self, config, input_values, attention_mask):
|
|
model = WavLMModel(config=config)
|
|
model.config.layerdrop = 1.0
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
outputs = model(input_values, attention_mask=attention_mask, output_attentions=True)
|
|
self.parent.assertTrue(len(outputs.attentions) > 0)
|
|
|
|
def check_labels_out_of_vocab(self, config, input_values, *args):
|
|
model = WavLMForCTC(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
input_values = input_values[:3]
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
|
|
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
|
|
|
|
with pytest.raises(ValueError):
|
|
model(input_values, labels=labels)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, input_values, attention_mask = self.prepare_config_and_inputs()
|
|
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class WavLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(WavLMForCTC, WavLMModel, WavLMForAudioFrameClassification, WavLMForSequenceClassification, WavLMForXVector)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"audio-classification": WavLMForSequenceClassification,
|
|
"automatic-speech-recognition": WavLMForCTC,
|
|
"feature-extraction": WavLMModel,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_pruning = False
|
|
test_headmasking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = WavLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=WavLMConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_ctc_loss_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_ctc_loss(*config_and_inputs)
|
|
|
|
def test_seq_classifier_loss_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
|
|
|
|
def test_ctc_train(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_ctc_training(*config_and_inputs)
|
|
|
|
def test_seq_classifier_train(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_seq_classifier_training(*config_and_inputs)
|
|
|
|
def test_output_attentions(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_output_attentions(*config_and_inputs)
|
|
|
|
def test_labels_out_of_vocab(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
|
|
|
|
# WavLM has no inputs_embeds
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
# `input_ids` is renamed to `input_values`
|
|
def test_forward_signature(self):
|
|
pass
|
|
|
|
# WavLM cannot resize token embeddings
|
|
# since it has no tokens embeddings
|
|
def test_resize_tokens_embeddings(self):
|
|
pass
|
|
|
|
# WavLM has no inputs_embeds
|
|
# and thus the `get_input_embeddings` fn
|
|
# is not implemented
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
# WavLM uses PyTorch's multi-head-attention class
|
|
# and thus can't retain gradients on attentions
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
config.output_attentions = True
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
# set layer drop to 0
|
|
model.config.layerdrop = 0.0
|
|
|
|
input_values = inputs_dict["input_values"]
|
|
|
|
input_lengths = torch.tensor(
|
|
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
|
|
)
|
|
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
|
|
|
|
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
|
|
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
|
|
inputs_dict["labels"] = labels
|
|
|
|
outputs = model(**inputs_dict)
|
|
|
|
output = outputs[0]
|
|
|
|
# Encoder-/Decoder-only models
|
|
hidden_states = outputs.hidden_states[0]
|
|
hidden_states.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(hidden_states.grad)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
uniform_init_parms = [
|
|
"conv.weight",
|
|
"conv.parametrizations.weight",
|
|
"masked_spec_embed",
|
|
"codevectors",
|
|
"quantizer.weight_proj.weight",
|
|
"project_hid.weight",
|
|
"project_hid.bias",
|
|
"project_q.weight",
|
|
"project_q.bias",
|
|
"feature_projection.projection.weight",
|
|
"feature_projection.projection.bias",
|
|
"label_embeddings_concat",
|
|
"rel_attn_embed",
|
|
"objective.weight",
|
|
]
|
|
if param.requires_grad:
|
|
if any(x in name for x in uniform_init_parms):
|
|
self.assertTrue(
|
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
# overwrite from test_modeling_common
|
|
def _mock_init_weights(self, module):
|
|
if hasattr(module, "weight") and module.weight is not None:
|
|
module.weight.data.fill_(3)
|
|
if hasattr(module, "weight_g") and module.weight_g is not None:
|
|
module.weight_g.data.fill_(3)
|
|
if hasattr(module, "weight_v") and module.weight_v is not None:
|
|
module.weight_v.data.fill_(3)
|
|
if hasattr(module, "bias") and module.bias is not None:
|
|
module.bias.data.fill_(3)
|
|
if hasattr(module, "codevectors") and module.codevectors is not None:
|
|
module.codevectors.data.fill_(3)
|
|
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
|
|
module.masked_spec_embed.data.fill_(3)
|
|
|
|
@unittest.skip(reason="Feed forward chunking is not implemented for WavLM")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus")
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
@slow
|
|
class WavLMModelIntegrationTest(unittest.TestCase):
|
|
def _load_datasamples(self, num_samples):
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
# automatic decoding with librispeech
|
|
speech_samples = ds.sort("id").filter(
|
|
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
|
|
)[:num_samples]["audio"]
|
|
|
|
return [x["array"] for x in speech_samples]
|
|
|
|
def _load_superb(self, task, num_samples):
|
|
ds = load_dataset("anton-l/superb_dummy", task, split="test")
|
|
|
|
return ds[:num_samples]
|
|
|
|
def test_inference_base(self):
|
|
model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus").to(torch_device)
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
"microsoft/wavlm-base-plus", return_attention_mask=True
|
|
)
|
|
|
|
input_speech = self._load_datasamples(2)
|
|
|
|
inputs = feature_extractor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
hidden_states_slice = (
|
|
model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu()
|
|
)
|
|
|
|
EXPECTED_HIDDEN_STATES_SLICE = torch.tensor(
|
|
[[[0.0577, 0.1161], [0.0579, 0.1165]], [[0.0199, 0.1237], [0.0059, 0.0605]]]
|
|
)
|
|
self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, atol=5e-2))
|
|
|
|
def test_inference_large(self):
|
|
model = WavLMModel.from_pretrained("microsoft/wavlm-large").to(torch_device)
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
"microsoft/wavlm-large", return_attention_mask=True
|
|
)
|
|
|
|
input_speech = self._load_datasamples(2)
|
|
|
|
inputs = feature_extractor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
hidden_states_slice = (
|
|
model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu()
|
|
)
|
|
|
|
EXPECTED_HIDDEN_STATES_SLICE = torch.tensor(
|
|
[[[0.2122, 0.0500], [0.2118, 0.0563]], [[0.1353, 0.1818], [0.2453, 0.0595]]]
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, rtol=5e-2))
|
|
|
|
def test_inference_diarization(self):
|
|
model = WavLMForAudioFrameClassification.from_pretrained("microsoft/wavlm-base-plus-sd").to(torch_device)
|
|
processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sd")
|
|
input_data = self._load_superb("sd", 4)
|
|
inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(input_values, attention_mask=attention_mask)
|
|
# labels is a one-hot array of shape (num_frames, num_speakers)
|
|
labels = (outputs.logits > 0).long()
|
|
|
|
# s3prl logits for the same batch
|
|
expected_logits = torch.tensor(
|
|
[
|
|
[[-5.9566, -8.6554], [-5.7137, -8.9386], [-5.7906, -7.0973], [-5.7829, -5.9999]],
|
|
[[-5.2086, -7.7878], [-4.8890, -7.9312], [-4.2004, -3.9101], [-5.4480, -4.6932]],
|
|
[[-4.6105, -6.7178], [-5.1930, -6.1635], [-2.6228, -4.1123], [-2.7646, -3.1576]],
|
|
[[-4.4477, -7.9206], [-3.9339, -7.3707], [-4.9528, -4.8242], [-3.6921, -2.9687]],
|
|
],
|
|
device=torch_device,
|
|
)
|
|
self.assertEqual(labels[0, :, 0].sum(), 258)
|
|
self.assertEqual(labels[0, :, 1].sum(), 647)
|
|
self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2))
|
|
|
|
def test_inference_speaker_verification(self):
|
|
model = WavLMForXVector.from_pretrained("microsoft/wavlm-base-plus-sv").to(torch_device)
|
|
processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sv")
|
|
input_data = self._load_superb("si", 4)
|
|
|
|
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
|
|
labels = torch.tensor([5, 1, 1, 3], device=torch_device).T
|
|
|
|
with torch.no_grad():
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
outputs = model(input_values, attention_mask=attention_mask, labels=labels)
|
|
embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1)
|
|
|
|
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
|
|
# id10002 vs id10002
|
|
self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).item(), 0.9787, 3)
|
|
# id10006 vs id10002
|
|
self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).item(), 0.5064, 3)
|
|
# id10002 vs id10004
|
|
self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).item(), 0.4780, 3)
|
|
|
|
self.assertAlmostEqual(outputs.loss.item(), 18.4154, 2)
|