302 lines
11 KiB
Python
302 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch ViTDet model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import VitDetConfig
|
|
from transformers.testing_utils import is_flaky, require_torch, torch_device
|
|
from transformers.utils import is_torch_available
|
|
|
|
from ...test_backbone_common import BackboneTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import VitDetBackbone, VitDetModel
|
|
|
|
|
|
class VitDetModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
self.num_patches_one_direction = self.image_size // self.patch_size
|
|
self.seq_length = (self.image_size // self.patch_size) ** 2
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return VitDetConfig(
|
|
image_size=self.image_size,
|
|
pretrain_image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = VitDetModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape,
|
|
(self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction),
|
|
)
|
|
|
|
def create_and_check_backbone(self, config, pixel_values, labels):
|
|
model = VitDetBackbone(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
# verify hidden states
|
|
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
|
|
self.parent.assertListEqual(
|
|
list(result.feature_maps[0].shape),
|
|
[self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction],
|
|
)
|
|
|
|
# verify channels
|
|
self.parent.assertEqual(len(model.channels), len(config.out_features))
|
|
self.parent.assertListEqual(model.channels, [config.hidden_size])
|
|
|
|
# verify backbone works with out_features=None
|
|
config.out_features = None
|
|
model = VitDetBackbone(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
# verify feature maps
|
|
self.parent.assertEqual(len(result.feature_maps), 1)
|
|
self.parent.assertListEqual(
|
|
list(result.feature_maps[0].shape),
|
|
[self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction],
|
|
)
|
|
|
|
# verify channels
|
|
self.parent.assertEqual(len(model.channels), 1)
|
|
self.parent.assertListEqual(model.channels, [config.hidden_size])
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class VitDetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as VitDet does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (VitDetModel, VitDetBackbone) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"feature-extraction": VitDetModel} if is_torch_available() else {}
|
|
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = VitDetModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=VitDetConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
@is_flaky(max_attempts=3, description="`torch.nn.init.trunc_normal_` is flaky.")
|
|
def test_initialization(self):
|
|
super().test_initialization()
|
|
|
|
# TODO: Fix me (once this model gets more usage)
|
|
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
|
|
def test_cpu_offload(self):
|
|
super().test_cpu_offload()
|
|
|
|
# TODO: Fix me (once this model gets more usage)
|
|
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
|
|
def test_disk_offload_bin(self):
|
|
super().test_disk_offload()
|
|
|
|
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
|
|
def test_disk_offload_safetensors(self):
|
|
super().test_disk_offload()
|
|
|
|
# TODO: Fix me (once this model gets more usage)
|
|
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
|
|
def test_model_parallelism(self):
|
|
super().test_model_parallelism()
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="VitDet does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_backbone(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_backbone(*config_and_inputs)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
|
|
expected_num_stages = self.model_tester.num_hidden_layers
|
|
self.assertEqual(len(hidden_states), expected_num_stages + 1)
|
|
|
|
# VitDet's feature maps are of shape (batch_size, num_channels, height, width)
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[
|
|
self.model_tester.num_patches_one_direction,
|
|
self.model_tester.num_patches_one_direction,
|
|
],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# overwrite since VitDet only supports retraining gradients of hidden states
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
config.output_attentions = self.has_attentions
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
outputs = model(**inputs)
|
|
|
|
output = outputs[0]
|
|
|
|
# Encoder-/Decoder-only models
|
|
hidden_states = outputs.hidden_states[0]
|
|
hidden_states.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(hidden_states.grad)
|
|
|
|
@unittest.skip(reason="VitDet does not support feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitDet does not have standalone checkpoints since it used as backbone in other models")
|
|
def test_model_from_pretrained(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class VitDetBackboneTest(unittest.TestCase, BackboneTesterMixin):
|
|
all_model_classes = (VitDetBackbone,) if is_torch_available() else ()
|
|
config_class = VitDetConfig
|
|
|
|
has_attentions = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = VitDetModelTester(self)
|