423 lines
16 KiB
Python
423 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch VideoMAE model."""
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers import VideoMAEConfig
|
|
from transformers.models.auto import get_values
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import (
|
|
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
|
|
VideoMAEForPreTraining,
|
|
VideoMAEForVideoClassification,
|
|
VideoMAEModel,
|
|
)
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import VideoMAEImageProcessor
|
|
|
|
|
|
class VideoMAEModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=10,
|
|
num_channels=3,
|
|
patch_size=2,
|
|
tubelet_size=2,
|
|
num_frames=2,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
mask_ratio=0.9,
|
|
scope=None,
|
|
attn_implementation="eager",
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.tubelet_size = tubelet_size
|
|
self.num_frames = num_frames
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.mask_ratio = mask_ratio
|
|
self.scope = scope
|
|
self.attn_implementation = attn_implementation
|
|
|
|
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
|
|
self.num_patches_per_frame = (image_size // patch_size) ** 2
|
|
self.seq_length = (num_frames // tubelet_size) * self.num_patches_per_frame
|
|
|
|
# use this variable to define bool_masked_pos
|
|
self.num_masks = int(mask_ratio * self.seq_length)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]
|
|
)
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return VideoMAEConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
num_frames=self.num_frames,
|
|
tubelet_size=self.tubelet_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
decoder_hidden_size=self.hidden_size,
|
|
decoder_intermediate_size=self.intermediate_size,
|
|
decoder_num_attention_heads=self.num_attention_heads,
|
|
decoder_num_hidden_layers=self.num_hidden_layers,
|
|
attn_implementation=self.attn_implementation,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = VideoMAEModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_pretraining(self, config, pixel_values, labels):
|
|
model = VideoMAEForPreTraining(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
# important: each video needs to have the same number of masked patches
|
|
# hence we define a single mask, which we then repeat for each example in the batch
|
|
mask = torch.ones((self.num_masks,))
|
|
mask = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))])
|
|
bool_masked_pos = mask.expand(self.batch_size, -1).bool()
|
|
|
|
result = model(pixel_values, bool_masked_pos)
|
|
# model only returns predictions for masked patches
|
|
num_masked_patches = mask.sum().item()
|
|
decoder_num_labels = 3 * self.tubelet_size * self.patch_size**2
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class VideoMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as VideoMAE does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (
|
|
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_pruning = False
|
|
test_torchscript = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = VideoMAEModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=VideoMAEConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = copy.deepcopy(inputs_dict)
|
|
|
|
if model_class == VideoMAEForPreTraining:
|
|
# important: each video needs to have the same number of masked patches
|
|
# hence we define a single mask, which we then repeat for each example in the batch
|
|
mask = torch.ones((self.model_tester.num_masks,))
|
|
mask = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))])
|
|
batch_size = inputs_dict["pixel_values"].shape[0]
|
|
bool_masked_pos = mask.expand(batch_size, -1).bool()
|
|
inputs_dict["bool_masked_pos"] = bool_masked_pos.to(torch_device)
|
|
|
|
if return_labels:
|
|
if model_class in [
|
|
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
|
|
return inputs_dict
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="VideoMAE does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_pretraining(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "MCG-NJU/videomae-base"
|
|
model = VideoMAEModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_attention_outputs(self):
|
|
if not self.has_attentions:
|
|
pass
|
|
|
|
else:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks
|
|
seq_len = (
|
|
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
|
|
)
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, seq_len, seq_len],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
self.assertEqual(out_len + 1, len(outputs))
|
|
|
|
self_attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, seq_len, seq_len],
|
|
)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
expected_num_layers = self.model_tester.num_hidden_layers + 1
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks
|
|
seq_length = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
|
|
# We will verify our results on a video of eating spaghetti
|
|
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
|
|
def prepare_video():
|
|
file = hf_hub_download(
|
|
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
|
|
)
|
|
video = np.load(file)
|
|
return list(video)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class VideoMAEModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
# logits were tested with a different mean and std, so we use the same here
|
|
return (
|
|
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5])
|
|
if is_vision_available()
|
|
else None
|
|
)
|
|
|
|
@slow
|
|
def test_inference_for_video_classification(self):
|
|
model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to(
|
|
torch_device
|
|
)
|
|
|
|
image_processor = self.default_image_processor
|
|
video = prepare_video()
|
|
inputs = image_processor(video, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 400))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]).to(torch_device)
|
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_for_pretraining(self):
|
|
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(torch_device)
|
|
|
|
image_processor = self.default_image_processor
|
|
video = prepare_video()
|
|
inputs = image_processor(video, return_tensors="pt").to(torch_device)
|
|
|
|
# add boolean mask, indicating which patches to mask
|
|
local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt")
|
|
inputs["bool_masked_pos"] = torch.load(local_path)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size([1, 1408, 1536])
|
|
expected_slice = torch.tensor(
|
|
[[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=torch_device
|
|
)
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
|
|
|
|
# verify the loss (`config.norm_pix_loss` = `True`)
|
|
expected_loss = torch.tensor([0.5142], device=torch_device)
|
|
self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4))
|
|
|
|
# verify the loss (`config.norm_pix_loss` = `False`)
|
|
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=False).to(
|
|
torch_device
|
|
)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
expected_loss = torch.tensor(torch.tensor([0.6469]), device=torch_device)
|
|
self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4))
|