302 lines
11 KiB
Python
302 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch UperNet framework."""
|
|
|
|
import unittest
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers import ConvNextConfig, UperNetConfig
|
|
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import UperNetForSemanticSegmentation
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import AutoImageProcessor
|
|
|
|
|
|
class UperNetModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=32,
|
|
num_channels=3,
|
|
num_stages=4,
|
|
hidden_sizes=[10, 20, 30, 40],
|
|
depths=[1, 1, 1, 1],
|
|
is_training=True,
|
|
use_labels=True,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
out_features=["stage2", "stage3", "stage4"],
|
|
num_labels=3,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.num_channels = num_channels
|
|
self.num_stages = num_stages
|
|
self.hidden_sizes = hidden_sizes
|
|
self.depths = depths
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.out_features = out_features
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
self.num_hidden_layers = num_stages
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_backbone_config(self):
|
|
return ConvNextConfig(
|
|
num_channels=self.num_channels,
|
|
num_stages=self.num_stages,
|
|
hidden_sizes=self.hidden_sizes,
|
|
depths=self.depths,
|
|
is_training=self.is_training,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
out_features=self.out_features,
|
|
)
|
|
|
|
def get_config(self):
|
|
return UperNetConfig(
|
|
backbone_config=self.get_backbone_config(),
|
|
backbone=None,
|
|
hidden_size=64,
|
|
pool_scales=[1, 2, 3, 6],
|
|
use_auxiliary_head=True,
|
|
auxiliary_loss_weight=0.4,
|
|
auxiliary_in_channels=40,
|
|
auxiliary_channels=32,
|
|
auxiliary_num_convs=1,
|
|
auxiliary_concat_input=False,
|
|
loss_ignore_index=255,
|
|
num_labels=self.num_labels,
|
|
)
|
|
|
|
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels):
|
|
model = UperNetForSemanticSegmentation(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
pixel_values,
|
|
labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class UperNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as UperNet does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torchscript = False
|
|
has_attentions = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = UperNetModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=UperNetConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.create_and_test_config_common_properties()
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
def create_and_test_config_common_properties(self):
|
|
return
|
|
|
|
def test_for_semantic_segmentation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="UperNet does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="UperNet does not support input and output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="UperNet does not have a base model")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="UperNet does not have a base model")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@require_torch_multi_gpu
|
|
@unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
pass
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_stages = self.model_tester.num_stages
|
|
self.assertEqual(len(hidden_states), expected_num_stages + 1)
|
|
|
|
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
configs_no_init.backbone_config = _config_zero_init(configs_no_init.backbone_config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
@unittest.skip(reason="UperNet does not have tied weights")
|
|
def test_tied_model_weights_key_ignore(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "openmmlab/upernet-convnext-tiny"
|
|
model = UperNetForSemanticSegmentation.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of ADE20k
|
|
def prepare_img():
|
|
filepath = hf_hub_download(
|
|
repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg"
|
|
)
|
|
image = Image.open(filepath).convert("RGB")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
@slow
|
|
class UperNetModelIntegrationTest(unittest.TestCase):
|
|
def test_inference_swin_backbone(self):
|
|
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny")
|
|
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny").to(torch_device)
|
|
|
|
image = prepare_img()
|
|
inputs = processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]
|
|
).to(torch_device)
|
|
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
|
|
|
|
def test_inference_convnext_backbone(self):
|
|
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny")
|
|
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny").to(torch_device)
|
|
|
|
image = prepare_img()
|
|
inputs = processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]
|
|
).to(torch_device)
|
|
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
|