transformers/tests/models/udop/test_modeling_udop.py

578 lines
20 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import UdopConfig, is_torch_available, is_vision_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UdopEncoderModel, UdopForConditionalGeneration, UdopModel, UdopProcessor
if is_vision_available():
from PIL import Image
class UdopModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=32,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
scope=None,
decoder_layers=None,
range_bbox=1000,
decoder_start_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.scope = None
self.decoder_layers = decoder_layers
self.range_bbox = range_bbox
self.decoder_start_token_id = decoder_start_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
bbox = ids_tensor([self.batch_size, self.encoder_seq_length, 4], self.range_bbox).float()
# Ensure that bbox is legal
for i in range(bbox.shape[0]):
for j in range(bbox.shape[1]):
if bbox[i, j, 3] < bbox[i, j, 1]:
t = bbox[i, j, 3]
bbox[i, j, 3] = bbox[i, j, 1]
bbox[i, j, 1] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
t = bbox[i, j, 2]
bbox[i, j, 2] = bbox[i, j, 0]
bbox[i, j, 0] = t
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
bbox,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_config(self):
return UdopConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
def create_and_check_model(
self,
config,
input_ids,
bbox,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = UdopModel(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
bbox=bbox,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, bbox=bbox, decoder_input_ids=decoder_input_ids)
decoder_output = result.last_hidden_state
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(decoder_past), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]), 4)
def create_and_check_with_lm_head(
self,
config,
input_ids,
bbox,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = UdopForConditionalGeneration(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
bbox=bbox,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 4)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_generate_with_past_key_values(
self,
config,
input_ids,
bbox,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = UdopForConditionalGeneration(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], bbox=bbox[:1, :, :], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(
input_ids[:1], bbox=bbox[:1, :, :], num_beams=2, max_length=5, do_sample=True
)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
bbox,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = UdopForConditionalGeneration(config=config).to(torch_device).half().eval()
output = model(input_ids, bbox=bbox, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids).logits
self.parent.assertFalse(torch.isnan(output).any().item())
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
bbox,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"bbox": bbox,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
@require_torch
class UdopModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
UdopModel,
UdopForConditionalGeneration,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (UdopForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": UdopModel} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_torchscript = False
test_head_masking = False
test_resize_embeddings = True
test_model_parallel = False
is_encoder_decoder = True
test_cpu_offload = False
# The small UDOP model needs higher percentages for CPU/MP tests
model_split_percents = [0.8, 0.9]
def setUp(self):
self.model_tester = UdopModelTester(self)
self.config_tester = ConfigTester(self, config_class=UdopConfig, d_model=37)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class.__name__ == "UdopForConditionalGeneration":
if return_labels:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_with_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_lm_head(*config_and_inputs)
def test_generate_with_past_key_values(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_model_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
@unittest.skip("Gradient checkpointing is not supported by this model")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = sorted([*signature.parameters.keys()])
expected_arg_names = [
"attention_mask",
"bbox",
"cross_attn_head_mask",
"decoder_attention_mask",
"decoder_head_mask",
"decoder_input_ids",
"decoder_inputs_embeds",
"encoder_outputs",
"head_mask",
"input_ids",
"inputs_embeds",
]
if model_class in self.all_generative_model_classes:
expected_arg_names.append(
"labels",
)
expected_arg_names = sorted(expected_arg_names)
self.assertListEqual(sorted(arg_names[: len(expected_arg_names)]), expected_arg_names)
@unittest.skip(
"Not currently compatible. Fails with - NotImplementedError: Cannot copy out of meta tensor; no data!"
)
def test_save_load_low_cpu_mem_usage(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "microsoft/udop-large"
model = UdopForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
class UdopEncoderOnlyModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
seq_length=7,
# For common tests
is_training=False,
use_attention_mask=True,
hidden_size=32,
num_hidden_layers=5,
decoder_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=32,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
scope=None,
range_bbox=1000,
):
self.parent = parent
self.batch_size = batch_size
# For common tests
self.seq_length = seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.decoder_layers = decoder_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.scope = None
self.range_bbox = range_bbox
def get_config(self):
return UdopConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
is_encoder_decoder=False,
)
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).float()
# Ensure that bbox is legal
for i in range(bbox.shape[0]):
for j in range(bbox.shape[1]):
if bbox[i, j, 3] < bbox[i, j, 1]:
t = bbox[i, j, 3]
bbox[i, j, 3] = bbox[i, j, 1]
bbox[i, j, 1] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
t = bbox[i, j, 2]
bbox[i, j, 2] = bbox[i, j, 0]
bbox[i, j, 0] = t
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
config = self.get_config()
return (
config,
input_ids,
bbox,
attention_mask,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
bbox,
attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"bbox": bbox,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_model(
self,
config,
input_ids,
bbox,
attention_mask,
):
model = UdopEncoderModel(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
)
encoder_output = result.last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
bbox,
attention_mask,
):
model = UdopEncoderModel(config=config).to(torch_device).half().eval()
output = model(input_ids, bbox=bbox, attention_mask=attention_mask)["last_hidden_state"]
self.parent.assertFalse(torch.isnan(output).any().item())
class UdopEncoderOnlyModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (UdopEncoderModel,) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_head_masking = False
test_resize_embeddings = False
test_model_parallel = False
all_parallelizable_model_classes = (UdopEncoderModel,) if is_torch_available() else ()
def setUp(self):
self.model_tester = UdopEncoderOnlyModelTester(self)
self.config_tester = ConfigTester(self, config_class=UdopConfig, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(
"Not currently compatible. Fails with - NotImplementedError: Cannot copy out of meta tensor; no data!"
)
def test_save_load_low_cpu_mem_usage(self):
pass
@require_torch
@require_sentencepiece
@require_tokenizers
@require_vision
@slow
class UdopModelIntegrationTests(unittest.TestCase):
@cached_property
def image(self):
filepath = hf_hub_download(
repo_id="hf-internal-testing/fixtures_docvqa", filename="document_2.png", repo_type="dataset"
)
image = Image.open(filepath).convert("RGB")
return image
@cached_property
def processor(self):
return UdopProcessor.from_pretrained("microsoft/udop-large")
@cached_property
def model(self):
return UdopForConditionalGeneration.from_pretrained("microsoft/udop-large").to(torch_device)
def test_conditional_generation(self):
processor = self.processor
model = self.model
prompt = "Question answering. In which year is the report made?"
encoding = processor(images=self.image, text=prompt, return_tensors="pt").to(torch_device)
predicted_ids = model.generate(**encoding)
predicted_text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
self.assertEqual(predicted_text, "2013")