298 lines
12 KiB
Python
298 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import SqueezeBertConfig, is_torch_available
|
|
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
SqueezeBertForMaskedLM,
|
|
SqueezeBertForMultipleChoice,
|
|
SqueezeBertForQuestionAnswering,
|
|
SqueezeBertForSequenceClassification,
|
|
SqueezeBertForTokenClassification,
|
|
SqueezeBertModel,
|
|
)
|
|
|
|
|
|
class SqueezeBertModelTester(object):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=False,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=64,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
q_groups=2,
|
|
k_groups=2,
|
|
v_groups=2,
|
|
post_attention_groups=2,
|
|
intermediate_groups=4,
|
|
output_groups=1,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
self.q_groups = q_groups
|
|
self.k_groups = k_groups
|
|
self.v_groups = v_groups
|
|
self.post_attention_groups = post_attention_groups
|
|
self.intermediate_groups = intermediate_groups
|
|
self.output_groups = output_groups
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return SqueezeBertConfig(
|
|
embedding_size=self.hidden_size,
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
attention_probs_dropout_prob=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
q_groups=self.q_groups,
|
|
k_groups=self.k_groups,
|
|
v_groups=self.v_groups,
|
|
post_attention_groups=self.post_attention_groups,
|
|
intermediate_groups=self.intermediate_groups,
|
|
output_groups=self.output_groups,
|
|
)
|
|
|
|
def create_and_check_squeezebert_model(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = SqueezeBertModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_squeezebert_for_masked_lm(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = SqueezeBertForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_squeezebert_for_question_answering(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = SqueezeBertForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
|
|
)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_squeezebert_for_sequence_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = SqueezeBertForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_squeezebert_for_token_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = SqueezeBertForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_squeezebert_for_multiple_choice(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = SqueezeBertForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
result = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
labels=choice_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class SqueezeBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
SqueezeBertModel,
|
|
SqueezeBertForMaskedLM,
|
|
SqueezeBertForMultipleChoice,
|
|
SqueezeBertForQuestionAnswering,
|
|
SqueezeBertForSequenceClassification,
|
|
SqueezeBertForTokenClassification,
|
|
)
|
|
if is_torch_available()
|
|
else None
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": SqueezeBertModel,
|
|
"fill-mask": SqueezeBertForMaskedLM,
|
|
"question-answering": SqueezeBertForQuestionAnswering,
|
|
"text-classification": SqueezeBertForSequenceClassification,
|
|
"token-classification": SqueezeBertForTokenClassification,
|
|
"zero-shot": SqueezeBertForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = SqueezeBertModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=SqueezeBertConfig, dim=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_squeezebert_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_squeezebert_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_squeezebert_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_squeezebert_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_squeezebert_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "squeezebert/squeezebert-uncased"
|
|
model = SqueezeBertModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
@require_torch
|
|
class SqueezeBertModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_classification_head(self):
|
|
model = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli")
|
|
|
|
input_ids = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
expected_shape = torch.Size((1, 3))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
expected_tensor = torch.tensor([[0.6401, -0.0349, -0.6041]])
|
|
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
|