transformers/tests/models/speecht5/test_modeling_speecht5.py

1897 lines
77 KiB
Python

# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch SpeechT5 model."""
import copy
import inspect
import tempfile
import unittest
from transformers import SpeechT5Config, SpeechT5HifiGanConfig
from transformers.testing_utils import (
is_torch_available,
require_deterministic_for_xpu,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from transformers.trainer_utils import set_seed
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SpeechT5ForSpeechToSpeech,
SpeechT5ForSpeechToText,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
SpeechT5Model,
SpeechT5Processor,
)
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
decoder_input_values=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
if decoder_input_ids is not None:
decoder_dict = {"decoder_input_ids": decoder_input_ids}
else:
decoder_dict = {"decoder_input_values": decoder_input_values}
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
**encoder_dict,
**decoder_dict,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_torch
class SpeechT5ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
vocab_size=81,
hidden_size=24,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length, self.hidden_size], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
decoder_input_values = floats_tensor([self.batch_size, self.seq_length, self.hidden_size], scale=1.0)
decoder_attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
inputs_dict = prepare_inputs_dict(
config,
input_values=input_values,
decoder_input_values=decoder_input_values,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_config(self):
return SpeechT5Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = SpeechT5Model(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
decoder_input_values = inputs_dict["decoder_input_values"]
result = model(input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
@require_torch
class SpeechT5ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (SpeechT5Model,) if is_torch_available() else ()
pipeline_model_mapping = (
{"automatic-speech-recognition": SpeechT5ForSpeechToText, "feature-extraction": SpeechT5Model}
if is_torch_available()
else {}
)
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
input_name = "input_values"
def setUp(self):
self.model_tester = SpeechT5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_values",
"attention_mask",
"decoder_input_values",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
# this model has no inputs_embeds
def test_inputs_embeds(self):
pass
# this model has no input embeddings
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
pass
@slow
def test_torchscript_output_attentions(self):
# disabled because this model doesn't have decoder_input_ids
pass
@slow
def test_torchscript_output_hidden_state(self):
# disabled because this model doesn't have decoder_input_ids
pass
@slow
def test_torchscript_simple(self):
# disabled because this model doesn't have decoder_input_ids
pass
@require_torch
class SpeechT5ForSpeechToTextTester:
def __init__(
self,
parent,
batch_size=13,
encoder_seq_length=1024, # speech is longer
decoder_seq_length=7,
is_training=False,
hidden_size=24,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=4,
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
vocab_size=81,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.vocab_size = vocab_size
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.encoder_seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length])
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size).clamp(2)
decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length])
config = self.get_config()
inputs_dict = prepare_inputs_dict(
config,
input_values=input_values,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_config(self):
return SpeechT5Config(
hidden_size=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
vocab_size=self.vocab_size,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = SpeechT5ForSpeechToText(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
result = model(input_values, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.decoder_seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = SpeechT5ForSpeechToText(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["decoder_input_ids"]
attention_mask = inputs_dict["decoder_attention_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
@require_torch
class SpeechT5ForSpeechToTextTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (SpeechT5ForSpeechToText,) if is_torch_available() else ()
all_generative_model_classes = (SpeechT5ForSpeechToText,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
input_name = "input_values"
def setUp(self):
self.model_tester = SpeechT5ForSpeechToTextTester(self)
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
subsampled_encoder_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(
encoder_seq_length
)
subsampled_encoder_key_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(
encoder_key_length
)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
out_len = len(outputs)
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
subsampled_encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_values",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
else:
seq_length = self.model_tester.seq_length
subsampled_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(seq_length)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[subsampled_seq_length, self.model_tester.hidden_size],
)
if config.is_encoder_decoder:
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# this model has no inputs_embeds
def test_inputs_embeds(self):
pass
def test_resize_embeddings_untied(self):
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
def test_resize_tokens_embeddings(self):
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# make sure that decoder_input_ids are resized
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
pass
# training is not supported yet
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SpeechT5ForSpeechToTextIntegrationTests(unittest.TestCase):
@cached_property
def default_processor(self):
return SpeechT5Processor.from_pretrained("microsoft/speecht5_asr")
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_generation_librispeech(self):
model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr")
model.to(torch_device)
processor = self.default_processor
input_speech = self._load_datasamples(1)
input_values = processor(audio=input_speech, return_tensors="pt").input_values.to(torch_device)
generated_ids = model.generate(input_values)
generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
EXPECTED_TRANSCRIPTIONS = [
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel"
]
self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS)
def test_generation_librispeech_batched(self):
model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr")
model.to(torch_device)
processor = self.default_processor
input_speech = self._load_datasamples(4)
inputs = processor(audio=input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
generated_ids = model.generate(input_values, attention_mask=attention_mask)
generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True)
EXPECTED_TRANSCRIPTIONS = [
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel",
"nor is mister quilter's manner less interesting than his matter",
"he tells us that at this festive season of the year with christmas and rosebeaf looming before us"
" similars drawn from eating and its results occur most readily to the mind",
"he has grave doubts whether sir frederick latin's work is really greek after all and can discover in it"
" but little of rocky ithica",
]
self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
@require_torch
class SpeechT5ForTextToSpeechTester:
def __init__(
self,
parent,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=1024, # speech is longer
is_training=False,
hidden_size=24,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=4,
vocab_size=81,
num_mel_bins=20,
reduction_factor=2,
speech_decoder_postnet_layers=2,
speech_decoder_postnet_units=32,
speech_decoder_prenet_units=32,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.vocab_size = vocab_size
self.num_mel_bins = num_mel_bins
self.reduction_factor = reduction_factor
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers
self.speech_decoder_postnet_units = speech_decoder_postnet_units
self.speech_decoder_prenet_units = speech_decoder_prenet_units
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2)
attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length])
decoder_input_values = floats_tensor([self.batch_size, self.decoder_seq_length, self.num_mel_bins], scale=1.0)
decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length])
config = self.get_config()
inputs_dict = prepare_inputs_dict(
config,
input_ids=input_ids,
decoder_input_values=decoder_input_values,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_config(self):
return SpeechT5Config(
hidden_size=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
vocab_size=self.vocab_size,
num_mel_bins=self.num_mel_bins,
reduction_factor=self.reduction_factor,
speech_decoder_postnet_layers=self.speech_decoder_postnet_layers,
speech_decoder_postnet_units=self.speech_decoder_postnet_units,
speech_decoder_prenet_units=self.speech_decoder_prenet_units,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = SpeechT5ForTextToSpeech(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
decoder_input_values = inputs_dict["decoder_input_values"]
result = model(input_ids, attention_mask=attention_mask, decoder_input_values=decoder_input_values)
self.parent.assertEqual(
result.spectrogram.shape,
(self.batch_size, self.decoder_seq_length * self.reduction_factor, self.num_mel_bins),
)
@require_torch
class SpeechT5ForTextToSpeechTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (SpeechT5ForTextToSpeech,) if is_torch_available() else ()
all_generative_model_classes = (SpeechT5ForTextToSpeech,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
input_name = "input_ids"
def setUp(self):
self.model_tester = SpeechT5ForTextToSpeechTester(self)
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_decoder_model_past_with_large_inputs(self):
pass
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_determinism(self):
pass
@unittest.skip("skipped because there is always dropout in SpeechT5SpeechDecoderPrenet")
def test_batching_equivalence(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_ids",
"attention_mask",
"decoder_input_values",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# this model has no inputs_embeds
def test_inputs_embeds(self):
pass
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_model_outputs_equivalence(self):
pass
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_save_load(self):
pass
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
pass
@slow
def test_torchscript_output_attentions(self):
# disabled because this model doesn't have decoder_input_ids
pass
@slow
def test_torchscript_output_hidden_state(self):
# disabled because this model doesn't have decoder_input_ids
pass
@slow
def test_torchscript_simple(self):
# disabled because this model doesn't have decoder_input_ids
pass
# training is not supported yet
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
@require_torch
@require_sentencepiece
@require_tokenizers
class SpeechT5ForTextToSpeechIntegrationTests(unittest.TestCase):
@cached_property
def default_model(self):
return SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(torch_device)
@cached_property
def default_processor(self):
return SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
@cached_property
def default_vocoder(self):
return SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(torch_device)
def test_generation(self):
model = self.default_model
processor = self.default_processor
input_text = "Mister Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
input_ids = processor(text=input_text, return_tensors="pt").input_ids.to(torch_device)
speaker_embeddings = torch.zeros((1, 512), device=torch_device)
# Generate speech and validate output dimensions
set_seed(555) # Ensure deterministic behavior
generated_speech = model.generate_speech(input_ids, speaker_embeddings=speaker_embeddings)
num_mel_bins = model.config.num_mel_bins
self.assertEqual(
generated_speech.shape[1], num_mel_bins, "Generated speech output has an unexpected number of mel bins."
)
# Validate generation with additional kwargs using model.generate;
# same method than generate_speech
set_seed(555) # Reset seed for consistent results
generated_speech_with_generate = model.generate(
input_ids, attention_mask=None, speaker_embeddings=speaker_embeddings
)
self.assertEqual(
generated_speech_with_generate.shape,
generated_speech.shape,
"Shape mismatch between generate_speech and generate methods.",
)
@require_deterministic_for_xpu
def test_one_to_many_generation(self):
model = self.default_model
processor = self.default_processor
vocoder = self.default_vocoder
input_text = [
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel",
"nor is mister quilter's manner less interesting than his matter",
"he tells us that at this festive season of the year with christmas and rosebeaf looming before us",
]
inputs = processor(text=input_text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device)
speaker_embeddings = torch.zeros((1, 512), device=torch_device)
# Generate spectrograms
set_seed(555) # Ensure deterministic behavior
spectrograms, spectrogram_lengths = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
attention_mask=inputs["attention_mask"],
return_output_lengths=True,
)
# Validate generated spectrogram dimensions
expected_batch_size = len(input_text)
num_mel_bins = model.config.num_mel_bins
actual_batch_size, _, actual_num_mel_bins = spectrograms.shape
self.assertEqual(actual_batch_size, expected_batch_size, "Batch size of generated spectrograms is incorrect.")
self.assertEqual(
actual_num_mel_bins, num_mel_bins, "Number of mel bins in batch generated spectrograms is incorrect."
)
# Generate waveforms using the vocoder
waveforms = vocoder(spectrograms)
waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths]
# Validate generation with integrated vocoder
set_seed(555) # Reset seed for consistent results
waveforms_with_vocoder, waveform_lengths_with_vocoder = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
attention_mask=inputs["attention_mask"],
vocoder=vocoder,
return_output_lengths=True,
)
# Check consistency between waveforms generated with and without standalone vocoder
self.assertTrue(
torch.allclose(waveforms, waveforms_with_vocoder, atol=1e-8),
"Mismatch in waveforms generated with and without the standalone vocoder.",
)
self.assertEqual(
waveform_lengths,
waveform_lengths_with_vocoder,
"Waveform lengths differ between standalone and integrated vocoder generation.",
)
# Test generation consistency without returning lengths
set_seed(555) # Reset seed for consistent results
waveforms_with_vocoder_no_lengths = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
attention_mask=inputs["attention_mask"],
vocoder=vocoder,
return_output_lengths=False,
)
# Validate waveform consistency without length information
self.assertTrue(
torch.allclose(waveforms_with_vocoder_no_lengths, waveforms_with_vocoder, atol=1e-8),
"Waveforms differ when generated with and without length information.",
)
# Validate batch vs. single instance generation consistency
for i, text in enumerate(input_text):
inputs = processor(text=text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device)
set_seed(555) # Reset seed for consistent results
spectrogram = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
)
# Check spectrogram shape consistency
self.assertEqual(
spectrogram.shape,
spectrograms[i][: spectrogram_lengths[i]].shape,
"Mismatch in spectrogram shape between batch and single instance generation.",
)
# Generate and validate waveform for single instance
waveform = vocoder(spectrogram)
self.assertEqual(
waveform.shape,
waveforms[i][: waveform_lengths[i]].shape,
"Mismatch in waveform shape between batch and single instance generation.",
)
# Check waveform consistency with integrated vocoder
set_seed(555) # Reset seed for consistent results
waveform_with_integrated_vocoder = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
vocoder=vocoder,
)
self.assertTrue(
torch.allclose(waveform, waveform_with_integrated_vocoder, atol=1e-8),
"Mismatch in waveform between standalone and integrated vocoder for single instance generation.",
)
def test_batch_generation(self):
model = self.default_model
processor = self.default_processor
vocoder = self.default_vocoder
input_text = [
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel",
"nor is mister quilter's manner less interesting than his matter",
"he tells us that at this festive season of the year with christmas and rosebeaf looming before us",
]
inputs = processor(text=input_text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device)
set_seed(555) # Ensure deterministic behavior
speaker_embeddings = torch.randn((len(input_text), 512), device=torch_device)
# Generate spectrograms
set_seed(555) # Reset seed for consistent results
spectrograms, spectrogram_lengths = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
attention_mask=inputs["attention_mask"],
return_output_lengths=True,
)
# Validate generated spectrogram dimensions
expected_batch_size = len(input_text)
num_mel_bins = model.config.num_mel_bins
actual_batch_size, _, actual_num_mel_bins = spectrograms.shape
self.assertEqual(
actual_batch_size,
expected_batch_size,
"Batch size of generated spectrograms is incorrect.",
)
self.assertEqual(
actual_num_mel_bins,
num_mel_bins,
"Number of mel bins in batch generated spectrograms is incorrect.",
)
# Generate waveforms using the vocoder
waveforms = vocoder(spectrograms)
waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths]
# Validate generation with integrated vocoder
set_seed(555) # Reset seed for consistent results
waveforms_with_vocoder, waveform_lengths_with_vocoder = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
attention_mask=inputs["attention_mask"],
vocoder=vocoder,
return_output_lengths=True,
)
# Check consistency between waveforms generated with and without standalone vocoder
self.assertTrue(
torch.allclose(waveforms, waveforms_with_vocoder, atol=1e-8),
"Mismatch in waveforms generated with and without the standalone vocoder.",
)
self.assertEqual(
waveform_lengths,
waveform_lengths_with_vocoder,
"Waveform lengths differ between standalone and integrated vocoder generation.",
)
# Test generation consistency without returning lengths
set_seed(555) # Reset seed for consistent results
waveforms_with_vocoder_no_lengths = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=speaker_embeddings,
attention_mask=inputs["attention_mask"],
vocoder=vocoder,
return_output_lengths=False,
)
# Validate waveform consistency without length information
self.assertTrue(
torch.allclose(waveforms_with_vocoder_no_lengths, waveforms_with_vocoder, atol=1e-8),
"Waveforms differ when generated with and without length information.",
)
# Validate batch vs. single instance generation consistency
for i, text in enumerate(input_text):
inputs = processor(text=text, padding="max_length", max_length=128, return_tensors="pt").to(torch_device)
current_speaker_embedding = speaker_embeddings[i].unsqueeze(0)
set_seed(555) # Reset seed for consistent results
spectrogram = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=current_speaker_embedding,
)
# Check spectrogram shape consistency
self.assertEqual(
spectrogram.shape,
spectrograms[i][: spectrogram_lengths[i]].shape,
"Mismatch in spectrogram shape between batch and single instance generation.",
)
# Generate and validate waveform for single instance
waveform = vocoder(spectrogram)
self.assertEqual(
waveform.shape,
waveforms[i][: waveform_lengths[i]].shape,
"Mismatch in waveform shape between batch and single instance generation.",
)
# Check waveform consistency with integrated vocoder
set_seed(555) # Reset seed for consistent results
waveform_with_integrated_vocoder = model.generate_speech(
input_ids=inputs["input_ids"],
speaker_embeddings=current_speaker_embedding,
vocoder=vocoder,
)
self.assertTrue(
torch.allclose(waveform, waveform_with_integrated_vocoder, atol=1e-8),
"Mismatch in waveform between standalone and integrated vocoder for single instance generation.",
)
@require_torch
class SpeechT5ForSpeechToSpeechTester:
def __init__(
self,
parent,
batch_size=13,
encoder_seq_length=1024, # speech is longer
decoder_seq_length=1024,
is_training=False,
hidden_size=24,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=4,
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
vocab_size=81,
num_mel_bins=20,
reduction_factor=2,
speech_decoder_postnet_layers=2,
speech_decoder_postnet_units=32,
speech_decoder_prenet_units=32,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.vocab_size = vocab_size
self.num_mel_bins = num_mel_bins
self.reduction_factor = reduction_factor
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers
self.speech_decoder_postnet_units = speech_decoder_postnet_units
self.speech_decoder_prenet_units = speech_decoder_prenet_units
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.encoder_seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length])
decoder_input_values = floats_tensor([self.batch_size, self.decoder_seq_length, self.num_mel_bins], scale=1.0)
decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length])
config = self.get_config()
inputs_dict = prepare_inputs_dict(
config,
input_values=input_values,
decoder_input_values=decoder_input_values,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_config(self):
return SpeechT5Config(
hidden_size=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
vocab_size=self.vocab_size,
num_mel_bins=self.num_mel_bins,
reduction_factor=self.reduction_factor,
speech_decoder_postnet_layers=self.speech_decoder_postnet_layers,
speech_decoder_postnet_units=self.speech_decoder_postnet_units,
speech_decoder_prenet_units=self.speech_decoder_prenet_units,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = SpeechT5ForSpeechToSpeech(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
decoder_input_values = inputs_dict["decoder_input_values"]
result = model(input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values)
self.parent.assertEqual(
result.spectrogram.shape,
(self.batch_size, self.decoder_seq_length * self.reduction_factor, self.num_mel_bins),
)
@require_torch
class SpeechT5ForSpeechToSpeechTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (SpeechT5ForSpeechToSpeech,) if is_torch_available() else ()
all_generative_model_classes = (SpeechT5ForSpeechToSpeech,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
input_name = "input_values"
def setUp(self):
self.model_tester = SpeechT5ForSpeechToSpeechTester(self)
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_decoder_model_past_with_large_inputs(self):
pass
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_determinism(self):
pass
@unittest.skip("skipped because there is always dropout in SpeechT5SpeechDecoderPrenet")
def test_batching_equivalence(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
subsampled_encoder_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(
encoder_seq_length
)
subsampled_encoder_key_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(
encoder_key_length
)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
out_len = len(outputs)
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
subsampled_encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_values",
"attention_mask",
"decoder_input_values",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
else:
seq_length = self.model_tester.seq_length
subsampled_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(seq_length)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[subsampled_seq_length, self.model_tester.hidden_size],
)
if config.is_encoder_decoder:
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# this model has no inputs_embeds
def test_inputs_embeds(self):
pass
# this model has no input embeddings
def test_model_common_attributes(self):
pass
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_model_outputs_equivalence(self):
pass
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
pass
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet
def test_save_load(self):
pass
@slow
def test_torchscript_output_attentions(self):
# disabled because this model doesn't have decoder_input_ids
pass
@slow
def test_torchscript_output_hidden_state(self):
# disabled because this model doesn't have decoder_input_ids
pass
@slow
def test_torchscript_simple(self):
# disabled because this model doesn't have decoder_input_ids
pass
# training is not supported yet
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SpeechT5ForSpeechToSpeechIntegrationTests(unittest.TestCase):
@cached_property
def default_processor(self):
return SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_generation_librispeech(self):
model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
model.to(torch_device)
processor = self.default_processor
input_speech = self._load_datasamples(1)
input_values = processor(audio=input_speech, return_tensors="pt").input_values.to(torch_device)
speaker_embeddings = torch.zeros((1, 512), device=torch_device)
generated_speech = model.generate_speech(input_values, speaker_embeddings=speaker_embeddings)
self.assertEqual(generated_speech.shape[1], model.config.num_mel_bins)
self.assertGreaterEqual(generated_speech.shape[0], 300)
self.assertLessEqual(generated_speech.shape[0], 310)
class SpeechT5HifiGanTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
num_mel_bins=20,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.num_mel_bins = num_mel_bins
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.seq_length, self.num_mel_bins], scale=1.0)
config = self.get_config()
return config, input_values
def get_config(self):
return SpeechT5HifiGanConfig(
model_in_dim=self.num_mel_bins,
upsample_initial_channel=32,
)
def create_and_check_model(self, config, input_values):
model = SpeechT5HifiGan(config=config).to(torch_device).eval()
result = model(input_values)
self.parent.assertEqual(result.shape, (self.seq_length * 256,))
def prepare_config_and_inputs_for_common(self):
config, input_values = self.prepare_config_and_inputs()
inputs_dict = {"spectrogram": input_values}
return config, inputs_dict
@require_torch
class SpeechT5HifiGanTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (SpeechT5HifiGan,) if is_torch_available() else ()
test_torchscript = False
test_pruning = False
test_resize_embeddings = False
test_resize_position_embeddings = False
test_head_masking = False
test_mismatched_shapes = False
test_missing_keys = False
test_model_parallel = False
is_encoder_decoder = False
has_attentions = False
input_name = "spectrogram"
def setUp(self):
self.model_tester = SpeechT5HifiGanTester(self)
self.config_tester = ConfigTester(self, config_class=SpeechT5HifiGanConfig)
def test_config(self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"spectrogram",
]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
# this model does not output hidden states
def test_hidden_states_output(self):
pass
# skip
def test_initialization(self):
pass
# this model has no inputs_embeds
def test_inputs_embeds(self):
pass
# this model has no input embeddings
def test_model_common_attributes(self):
pass
# skip as this model doesn't support all arguments tested
def test_model_outputs_equivalence(self):
pass
# this model does not output hidden states
def test_retain_grad_hidden_states_attentions(self):
pass
# skip because it fails on automapping of SpeechT5HifiGanConfig
def test_save_load_fast_init_from_base(self):
pass
# skip because it fails on automapping of SpeechT5HifiGanConfig
def test_save_load_fast_init_to_base(self):
pass
def test_batched_inputs_outputs(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
batched_inputs = inputs["spectrogram"].unsqueeze(0).repeat(2, 1, 1)
with torch.no_grad():
batched_outputs = model(batched_inputs.to(torch_device))
self.assertEqual(
batched_inputs.shape[0], batched_outputs.shape[0], msg="Got different batch dims for input and output"
)
def test_unbatched_inputs_outputs(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(inputs["spectrogram"].to(torch_device))
self.assertTrue(outputs.dim() == 1, msg="Got un-batched inputs but batched output")