455 lines
17 KiB
Python
455 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
from unittest.util import safe_repr
|
|
|
|
from transformers import AutoTokenizer, RwkvConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
RwkvForCausalLM,
|
|
RwkvModel,
|
|
)
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
|
|
else:
|
|
is_torch_greater_or_equal_than_2_0 = False
|
|
|
|
|
|
class RwkvModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=14,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_token_type_ids=False,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
use_mc_token_ids=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.use_mc_token_ids = use_mc_token_ids
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
self.bos_token_id = vocab_size - 1
|
|
self.eos_token_id = vocab_size - 1
|
|
self.pad_token_id = vocab_size - 1
|
|
|
|
def get_large_model_config(self):
|
|
return RwkvConfig.from_pretrained("sgugger/rwkv-4-pile-7b")
|
|
|
|
def prepare_config_and_inputs(
|
|
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
|
|
):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
mc_token_ids = None
|
|
if self.use_mc_token_ids:
|
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config(
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
|
|
reorder_and_upcast_attn=reorder_and_upcast_attn,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
None,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def get_config(
|
|
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
|
|
):
|
|
return RwkvConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
intermediate_size=self.intermediate_size,
|
|
activation_function=self.hidden_act,
|
|
resid_pdrop=self.hidden_dropout_prob,
|
|
attn_pdrop=self.attention_probs_dropout_prob,
|
|
n_positions=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
use_cache=True,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
|
|
reorder_and_upcast_attn=reorder_and_upcast_attn,
|
|
)
|
|
|
|
def get_pipeline_config(self):
|
|
config = self.get_config()
|
|
config.vocab_size = 300
|
|
return config
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
|
|
def create_and_check_rwkv_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
config.output_hidden_states = True
|
|
model = RwkvModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1)
|
|
|
|
def create_and_check_causl_lm(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = RwkvForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, labels=input_ids)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_state_equivalency(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = RwkvModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
outputs = model(input_ids)
|
|
output_whole = outputs.last_hidden_state
|
|
|
|
outputs = model(input_ids[:, :2])
|
|
output_one = outputs.last_hidden_state
|
|
|
|
# Using the state computed on the first inputs, we will get the same output
|
|
outputs = model(input_ids[:, 2:], state=outputs.state)
|
|
output_two = outputs.last_hidden_state
|
|
|
|
self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))
|
|
|
|
def create_and_check_forward_and_backwards(
|
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
|
|
):
|
|
model = RwkvForCausalLM(config)
|
|
model.to(torch_device)
|
|
if gradient_checkpointing:
|
|
model.gradient_checkpointing_enable()
|
|
|
|
result = model(input_ids, labels=input_ids)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
result.loss.backward()
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {"input_ids": input_ids}
|
|
|
|
return config, inputs_dict
|
|
|
|
|
|
@unittest.skipIf(
|
|
not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204"
|
|
)
|
|
@require_torch
|
|
class RwkvModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (RwkvModel, RwkvForCausalLM) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": RwkvModel, "text-generation": RwkvForCausalLM} if is_torch_available() else {}
|
|
)
|
|
# all_generative_model_classes = (RwkvForCausalLM,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_missing_keys = False
|
|
test_model_parallel = False
|
|
test_pruning = False
|
|
test_head_masking = False # Rwkv does not support head masking
|
|
|
|
def setUp(self):
|
|
self.model_tester = RwkvModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=RwkvConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
|
|
)
|
|
|
|
def assertInterval(self, member, container, msg=None):
|
|
r"""
|
|
Simple utility function to check if a member is inside an interval.
|
|
"""
|
|
if isinstance(member, torch.Tensor):
|
|
max_value, min_value = member.max().item(), member.min().item()
|
|
elif isinstance(member, list) or isinstance(member, tuple):
|
|
max_value, min_value = max(member), min(member)
|
|
|
|
if not isinstance(container, list):
|
|
raise TypeError("container should be a list or tuple")
|
|
elif len(container) != 2:
|
|
raise ValueError("container should have 2 elements")
|
|
|
|
expected_min, expected_max = container
|
|
|
|
is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max)
|
|
|
|
if not is_inside_interval:
|
|
standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container))
|
|
self.fail(self._formatMessage(msg, standardMsg))
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_rwkv_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_rwkv_model(*config_and_inputs)
|
|
|
|
def test_rwkv_lm_head_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_causl_lm(*config_and_inputs)
|
|
|
|
def test_state_equivalency(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_state_equivalency(*config_and_inputs)
|
|
|
|
def test_initialization(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=config)
|
|
for name, param in model.named_parameters():
|
|
if "time_decay" in name:
|
|
if param.requires_grad:
|
|
self.assertTrue(param.data.max().item() == 3.0)
|
|
self.assertTrue(param.data.min().item() == -5.0)
|
|
elif "time_first" in name:
|
|
if param.requires_grad:
|
|
# check if it's a ones like
|
|
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
|
|
elif any(x in name for x in ["time_mix_key", "time_mix_receptance"]):
|
|
if param.requires_grad:
|
|
self.assertInterval(
|
|
param.data,
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
elif "time_mix_value" in name:
|
|
if param.requires_grad:
|
|
self.assertInterval(
|
|
param.data,
|
|
[0.0, 1.3],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_attention_outputs(self):
|
|
r"""
|
|
Overriding the test_attention_outputs test as the attention outputs of Rwkv are different from other models
|
|
it has a shape `batch_size, seq_len, hidden_size`.
|
|
"""
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
batch_size = inputs["input_ids"].shape[0]
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
batch_size = inputs["input_ids"].shape[0]
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[batch_size, seq_len, config.hidden_size],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
batch_size = inputs["input_ids"].shape[0]
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
added_hidden_states = 1
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[batch_size, seq_len, config.hidden_size],
|
|
)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "RWKV/rwkv-4-169m-pile"
|
|
model = RwkvModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@unittest.skipIf(
|
|
not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204"
|
|
)
|
|
@slow
|
|
class RWKVIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model_id = "RWKV/rwkv-4-169m-pile"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
|
|
|
def test_simple_generate(self):
|
|
expected_output = "Hello my name is Jasmine and I am a newbie to the"
|
|
model = RwkvForCausalLM.from_pretrained(self.model_id).to(torch_device)
|
|
|
|
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
|
|
output = model.generate(input_ids, max_new_tokens=10)
|
|
output_sentence = self.tokenizer.decode(output[0].tolist())
|
|
|
|
self.assertEqual(output_sentence, expected_output)
|
|
|
|
def test_simple_generate_bf16(self):
|
|
expected_output = "Hello my name is Jasmine and I am a newbie to the"
|
|
|
|
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
|
|
model = RwkvForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device)
|
|
|
|
output = model.generate(input_ids, max_new_tokens=10)
|
|
output_sentence = self.tokenizer.decode(output[0].tolist())
|
|
|
|
self.assertEqual(output_sentence, expected_output)
|