transformers/tests/models/prophetnet/test_modeling_prophetnet.py

1329 lines
52 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import tempfile
import unittest
from transformers import ProphetNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
ProphetNetDecoder,
ProphetNetEncoder,
ProphetNetForCausalLM,
ProphetNetForConditionalGeneration,
ProphetNetModel,
ProphetNetTokenizer,
)
from transformers.modeling_outputs import BaseModelOutput
class ProphetNetModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
hidden_size=16,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
decoder_start_token_id=0,
encoder_ffn_dim=32,
num_encoder_layers=2,
num_encoder_attention_heads=4,
decoder_ffn_dim=32,
num_decoder_layers=2,
num_decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
ngram=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_decoder_layers
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.num_attention_heads = num_decoder_attention_heads
self.num_encoder_attention_heads = num_encoder_attention_heads
self.num_decoder_attention_heads = num_decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.disable_ngram_loss = disable_ngram_loss
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 7
self.num_hidden_states_types = 3 # encoder, decoder_main, decoder_ngram
self.decoder_attention_idx = 2
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_config(self):
return ProphetNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_encoder_layers=self.num_encoder_layers,
num_decoder_layers=self.num_decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_ffn_dim=self.encoder_ffn_dim,
num_encoder_attention_heads=self.num_encoder_attention_heads,
num_decoder_attention_heads=self.num_decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
ngram=self.ngram,
num_buckets=self.num_buckets,
relative_max_distance=self.relative_max_distance,
disable_ngram_loss=self.disable_ngram_loss,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
return (
config,
decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def check_prepare_lm_labels_via_shift_left(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetModel(config=config)
model.to(torch_device)
model.eval()
# make sure that lm_labels are correctly padded from the right
lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)
# add casaul pad token mask
triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
decoder_input_ids = model._shift_right(lm_labels)
for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
# first item
self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
if i < decoder_input_ids_slice.shape[-1]:
if i < decoder_input_ids.shape[-1] - 1:
# items before diagonal
self.parent.assertListEqual(
decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
)
# pad items after diagonal
if i < decoder_input_ids.shape[-1] - 2:
self.parent.assertListEqual(
decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
)
else:
# all items after square
self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())
def create_and_check_model(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
decoder_output = result.last_hidden_state
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(decoder_past), config.num_decoder_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]), 4) # cross-attention + uni-directional self-attention
def create_and_check_with_lm_head(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 5)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_causal_lm_decoder(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForCausalLM(config=config).to(torch_device).eval()
outputs = model(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 4)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_generate_with_past_key_value_states(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_decoder_generate_with_past_key_value_states(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetForCausalLM(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=10, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=10, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = ProphetNetModel(config=config).to(torch_device).half().eval()
output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"]
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_encoder_decoder_shared_weights(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
for model_class in [ProphetNetModel, ProphetNetForConditionalGeneration]:
torch.manual_seed(0)
model = model_class(config=config).to(torch_device).eval()
# load state dict copies weights but does not tie them
if model_class == ProphetNetForConditionalGeneration:
model.prophetnet.encoder.load_state_dict(model.prophetnet.decoder.state_dict(), strict=False)
else:
model.encoder.load_state_dict(model.decoder.state_dict(), strict=False)
torch.manual_seed(0)
tied_config = copy.deepcopy(config)
tied_config.tie_encoder_decoder = True
tied_model = model_class(config=tied_config).to(torch_device).eval()
model_result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
)
)
# check that outputs after saving and loading are equal
with tempfile.TemporaryDirectory() as tmpdirname:
tied_model.save_pretrained(tmpdirname)
tied_model = model_class.from_pretrained(tmpdirname)
tied_model.to(torch_device)
tied_model.eval()
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx],
tied_model_result[0][0, :, random_slice_idx],
atol=1e-4,
)
)
def check_fast_integration(
self,
config,
*args,
):
input_ids = torch.tensor([[7, 4, 78, 0, 24, 52, 43]], device=torch_device, dtype=torch.long)
decoder_input_ids = torch.tensor([[12, 62, 25, 11, 47, 15, 14]], device=torch_device, dtype=torch.long)
attention_mask = torch.tensor([[1, 1, 1, 0, 1, 0, 0]], device=torch_device, dtype=torch.long)
decoder_attention_mask = torch.tensor([[1, 1, 1, 0, 0, 1, 0]], device=torch_device, dtype=torch.long)
lm_labels = torch.tensor([[62, 25, 11, 47, 15, 14, 24]], device=torch_device, dtype=torch.long)
torch.manual_seed(0)
config.ngram = 4
model = ProphetNetForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertTrue(torch.allclose(result.loss, torch.tensor(4.5892, device=torch_device), atol=1e-3))
expected_logit_slice = torch.tensor(
[-0.0184, 0.0758, -0.0543, -0.0093, 0.0050, -0.0660, -0.1453], device=torch_device
)
self.parent.assertTrue(torch.allclose(result.logits[0, :, 1], expected_logit_slice, atol=1e-3))
def check_model_with_attn_mask(self, config, input_ids, decoder_input_ids, *args):
model = ProphetNetModel(config=config)
model.to(torch_device)
model.eval()
outputs_no_mask = model(input_ids=input_ids[:, :5], decoder_input_ids=decoder_input_ids[:, :5])
attention_mask = torch.ones_like(input_ids)
decoder_attention_mask = torch.ones_like(decoder_input_ids)
attention_mask[:, 5:] = 0
outputs_with_mask = model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
# check encoder
self.parent.assertTrue(
torch.allclose(
outputs_no_mask.encoder_last_hidden_state[0, :, 0],
outputs_with_mask.encoder_last_hidden_state[0, :5, 0],
atol=1e-3,
)
)
# check decoder
# main stream
self.parent.assertTrue(
torch.allclose(
outputs_no_mask.last_hidden_state[0, :, 0], outputs_with_mask.last_hidden_state[0, :5, 0], atol=1e-3
)
)
# predict stream
self.parent.assertTrue(
torch.allclose(
outputs_no_mask.last_hidden_state_ngram[0, :5, 0],
outputs_with_mask.last_hidden_state_ngram[0, :5, 0],
atol=1e-2,
)
)
def check_causal_lm_from_pretrained(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, *args
):
model = ProphetNetForConditionalGeneration(config).to(torch_device).eval()
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
decoder = ProphetNetForCausalLM.from_pretrained(tmp_dirname).to(torch_device)
encoder_hidden_states = model.prophetnet.encoder(input_ids).last_hidden_state
model_outputs = model(
encoder_outputs=BaseModelOutput(last_hidden_state=encoder_hidden_states),
decoder_input_ids=decoder_input_ids,
)
dec_outputs = decoder(encoder_hidden_states=encoder_hidden_states, input_ids=decoder_input_ids)
self.parent.assertTrue(
torch.allclose(
model_outputs.logits[0, :5],
dec_outputs.logits[0, :5],
atol=1e-3,
)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
class ProphetNetStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
hidden_size=16,
encoder_seq_length=7,
decoder_seq_length=7,
# For common tests
is_training=True,
is_decoder=True,
use_attention_mask=True,
add_cross_attention=False,
use_cache=False,
use_labels=True,
decoder_start_token_id=0,
encoder_ffn_dim=32,
num_encoder_layers=2,
num_encoder_attention_heads=4,
decoder_ffn_dim=32,
num_decoder_layers=2,
num_decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
ngram=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_decoder_layers
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.num_attention_heads = num_decoder_attention_heads
self.num_encoder_attention_heads = num_encoder_attention_heads
self.num_decoder_attention_heads = num_decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.use_cache = use_cache
self.disable_ngram_loss = disable_ngram_loss
self.max_position_embeddings = max_position_embeddings
self.add_cross_attention = add_cross_attention
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.num_hidden_states_types = 2 # decoder_main, decoder_ngram
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
config = ProphetNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_encoder_layers=self.num_encoder_layers,
num_decoder_layers=self.num_decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_ffn_dim=self.encoder_ffn_dim,
num_encoder_attention_heads=self.num_encoder_attention_heads,
num_decoder_attention_heads=self.num_decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
ngram=self.ngram,
num_buckets=self.num_buckets,
relative_max_distance=self.relative_max_distance,
disable_ngram_loss=self.disable_ngram_loss,
max_position_embeddings=self.max_position_embeddings,
add_cross_attention=self.add_cross_attention,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = ProphetNetDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = ProphetNetDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
class ProphetNetStandaloneEncoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
hidden_size=16,
encoder_seq_length=7,
decoder_seq_length=7,
# For common tests
is_training=True,
is_decoder=False,
use_attention_mask=True,
add_cross_attention=False,
use_cache=False,
use_labels=True,
decoder_start_token_id=0,
encoder_ffn_dim=32,
num_encoder_layers=2,
num_encoder_attention_heads=4,
decoder_ffn_dim=32,
num_decoder_layers=2,
num_decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_decoder_layers
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.num_attention_heads = num_decoder_attention_heads
self.num_encoder_attention_heads = num_encoder_attention_heads
self.num_decoder_attention_heads = num_decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.use_cache = use_cache
self.disable_ngram_loss = disable_ngram_loss
self.max_position_embeddings = max_position_embeddings
self.add_cross_attention = add_cross_attention
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 1
self.num_hidden_states_types = 1
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
config = ProphetNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_encoder_layers=self.num_encoder_layers,
num_decoder_layers=self.num_decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_ffn_dim=self.encoder_ffn_dim,
num_encoder_attention_heads=self.num_encoder_attention_heads,
num_decoder_attention_heads=self.num_decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
num_buckets=self.num_buckets,
relative_max_distance=self.relative_max_distance,
disable_ngram_loss=self.disable_ngram_loss,
max_position_embeddings=self.max_position_embeddings,
add_cross_attention=self.add_cross_attention,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class ProphetNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ProphetNetModel, ProphetNetForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (ProphetNetForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": ProphetNetForConditionalGeneration,
"feature-extraction": ProphetNetModel,
"summarization": ProphetNetForConditionalGeneration,
"text-generation": ProphetNetForCausalLM,
"text2text-generation": ProphetNetForConditionalGeneration,
"translation": ProphetNetForConditionalGeneration,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
is_encoder_decoder = True
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `ProphetNetConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def setUp(self):
self.model_tester = ProphetNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=ProphetNetConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_lm_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_lm_head(*config_and_inputs)
def test_only_decoder_causal_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_decoder(*config_and_inputs)
def test_fast_integration(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_fast_integration(*config_and_inputs)
def test_shared_weights(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs)
def test_shift_labels_via_shift_left(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs)
@unittest.skip("Flaky test with no simple resolution. TODO Fix me @patrickvonplaten")
def test_decoder_model_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_generate_with_past_key_value_states(*config_and_inputs)
def test_encoder_decoder_model_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_generate_with_past_key_value_states(*config_and_inputs)
def test_attn_mask_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_model_with_attn_mask(*config_and_inputs)
def test_config_save(self):
config = self.model_tester.prepare_config_and_inputs()[0]
config.add_cross_attention = False
with tempfile.TemporaryDirectory() as tmp_dirname:
config.save_pretrained(tmp_dirname)
config = ProphetNetConfig.from_pretrained(tmp_dirname)
self.assertFalse(config.add_cross_attention)
def test_causal_lm_from_pretrained(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_causal_lm_from_pretrained(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
# methods overwrite method in `test_modeling_common.py`
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
correct_outlen = 7
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
(self.model_tester.ngram + 1) * decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
def test_generate_with_head_masking(self):
"""Generating with head_masking has not been implemented for ProphetNet models yet."""
pass
@require_torch
class ProphetNetStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (ProphetNetDecoder, ProphetNetForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (ProphetNetForCausalLM,) if is_torch_available() else ()
test_pruning = False
test_resize_embeddings = False
is_encoder_decoder = False
def setUp(self):
self.model_tester = ProphetNetStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=ProphetNetConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
@require_torch
class ProphetNetStandaloneEncoderModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ProphetNetEncoder,) if is_torch_available() else ()
test_pruning = False
test_resize_embeddings = False
is_encoder_decoder = False
def setUp(self):
self.model_tester = ProphetNetStandaloneEncoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=ProphetNetConfig)
def test_config(self):
self.config_tester.run_common_tests()
@require_torch
class ProphetNetModelIntegrationTest(unittest.TestCase):
@slow
def test_pretrained_checkpoint_hidden_states(self):
model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased")
model.to(torch_device)
# encoder-decoder outputs
encoder_ids = torch.tensor(
[
[
2871,
102,
2048,
3176,
2780,
1997,
2871,
26727,
2169,
2097,
12673,
1996,
8457,
2006,
2049,
8240,
2859,
2799,
1012,
2023,
6512,
2038,
2174,
13977,
2195,
25962,
1012,
102,
]
]
).to(torch_device)
decoder_prev_ids = torch.tensor([[102, 2129, 2116, 2372, 2024, 2006, 2169, 1997, 2122, 2048, 2780, 1029]]).to(
torch_device
)
output = model(
input_ids=encoder_ids,
attention_mask=None,
encoder_outputs=None,
decoder_input_ids=decoder_prev_ids,
)
output_predited_logits = output[0]
expected_shape = torch.Size((1, 12, 30522))
self.assertEqual(output_predited_logits.shape, expected_shape)
expected_slice = torch.tensor(
[[[-7.7729, -8.0343, -8.26001], [-7.74213, -7.8629, -8.6000], [-7.7328, -7.8269, -8.5264]]]
).to(torch_device)
# self.assertTrue(torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4))
assert torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4)
# encoder outputs
encoder_outputs = model.prophetnet.encoder(encoder_ids)[0]
expected_encoder_outputs_slice = torch.tensor(
[[[-0.2526, -0.1951, -0.2185], [-0.8923, 0.2992, -0.4623], [-0.4585, 0.0165, -0.6652]]]
).to(torch_device)
expected_shape_encoder = torch.Size((1, 28, 1024))
self.assertEqual(encoder_outputs.shape, expected_shape_encoder)
# self.assertTrue(torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4))
assert torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4)
# decoder outputs
decoder_outputs = model.prophetnet.decoder(decoder_prev_ids, encoder_hidden_states=encoder_outputs)
predicting_streams = decoder_outputs[1].view(1, model.config.ngram, 12, -1)
predicting_streams_logits = model.lm_head(predicting_streams)
next_first_stream_logits = predicting_streams_logits[:, 0]
# self.assertTrue(torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4))
assert torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4)
@slow
def test_cnndm_inference(self):
model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-cnndm")
model.config.max_length = 512
model.to(torch_device)
tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-cnndm")
ARTICLE_TO_SUMMARIZE = (
"USTC was founded in Beijing by the Chinese Academy of Sciences (CAS) in September 1958. The Director of"
" CAS, Mr. Guo Moruo was appointed the first president of USTC. USTC's founding mission was to develop a"
" high-level science and technology workforce, as deemed critical for development of China's economy,"
' defense, and science and technology education. The establishment was hailed as "A Major Event in the'
' History of Chinese Education and Science." CAS has supported USTC by combining most of its institutes'
" with the departments of the university. USTC is listed in the top 16 national key universities, becoming"
" the youngest national key university.".lower()
)
input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=511, return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
summary_ids = model.generate(
input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True
)
EXPECTED_SUMMARIZE_512 = (
"us ##tc was founded by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc is listed in the"
" top 16 national key universities ."
)
generated_titles = [
" ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids
]
self.assertListEqual(
[EXPECTED_SUMMARIZE_512],
generated_titles,
)
input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=99, return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
# actually 98 tokens are used. max_length=100 contains bos and eos.
summary_ids = model.generate(
input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True
)
EXPECTED_SUMMARIZE_100 = (
r"us ##tc was founded in beijing by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc "
"'"
" s founding mission was to develop a high - level science and technology workforce . [X_SEP]"
' establishment hailed as " a major event in the history of chinese education and science "'
)
generated_titles = [
" ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids
]
self.assertListEqual(
[EXPECTED_SUMMARIZE_100],
generated_titles,
)
@slow
def test_question_gen_inference(self):
model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg")
model.to(torch_device)
tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg")
INPUTS = [
"Bill Gates [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.",
"1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.",
"April 4, 1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.",
]
input_ids = tokenizer(INPUTS, truncation=True, padding=True, return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
gen_output = model.generate(input_ids, num_beams=5, early_stopping=True)
generated_questions = tokenizer.batch_decode(gen_output, skip_special_tokens=True)
EXPECTED_QUESTIONS = [
"along with paul allen, who founded microsoft?",
"what year was microsoft founded?",
"when was microsoft founded?",
]
self.assertListEqual(
EXPECTED_QUESTIONS,
generated_questions,
)