377 lines
13 KiB
Python
377 lines
13 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
|
|
from transformers.testing_utils import (
|
|
get_tests_dir,
|
|
nested_simplify,
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_torch,
|
|
)
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers.models.plbart.modeling_plbart import shift_tokens_right
|
|
|
|
EN_CODE = 50003
|
|
PYTHON_CODE = 50002
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class PLBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "uclanlp/plbart-base"
|
|
tokenizer_class = PLBartTokenizer
|
|
rust_tokenizer_class = None
|
|
test_rust_tokenizer = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = PLBartTokenizer(SAMPLE_VOCAB, language_codes="base", keep_accents=True)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def test_full_base_tokenizer(self):
|
|
tokenizer = PLBartTokenizer(SAMPLE_VOCAB, language_codes="base", keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.convert_tokens_to_ids(tokens),
|
|
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
|
|
)
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(
|
|
tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"9",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"é",
|
|
".",
|
|
],
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(
|
|
ids,
|
|
[
|
|
value + tokenizer.fairseq_offset
|
|
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
|
|
],
|
|
)
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"<unk>",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"<unk>",
|
|
".",
|
|
],
|
|
)
|
|
|
|
end = tokenizer.vocab_size
|
|
language_tokens = [tokenizer.convert_ids_to_tokens(x) for x in range(end - 4, end)]
|
|
|
|
self.assertListEqual(language_tokens, ["__java__", "__python__", "__en_XX__", "<mask>"])
|
|
|
|
code = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
|
|
input_ids = tokenizer(code).input_ids
|
|
self.assertEqual(
|
|
tokenizer.decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False),
|
|
code,
|
|
)
|
|
|
|
def test_full_multi_tokenizer(self):
|
|
tokenizer = PLBartTokenizer(SAMPLE_VOCAB, language_codes="multi", keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.convert_tokens_to_ids(tokens),
|
|
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
|
|
)
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(
|
|
tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"9",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"é",
|
|
".",
|
|
],
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(
|
|
ids,
|
|
[
|
|
value + tokenizer.fairseq_offset
|
|
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
|
|
],
|
|
)
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"<unk>",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"<unk>",
|
|
".",
|
|
],
|
|
)
|
|
end = tokenizer.vocab_size
|
|
language_tokens = [tokenizer.convert_ids_to_tokens(x) for x in range(end - 7, end)]
|
|
|
|
self.assertListEqual(
|
|
language_tokens, ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"]
|
|
)
|
|
code = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
|
|
input_ids = tokenizer(code).input_ids
|
|
self.assertEqual(
|
|
tokenizer.decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False),
|
|
code,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class PLBartPythonEnIntegrationTest(unittest.TestCase):
|
|
checkpoint_name = "uclanlp/plbart-python-en_XX"
|
|
src_text = [
|
|
"def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])",
|
|
"def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])",
|
|
]
|
|
tgt_text = [
|
|
"Returns the maximum value of a b c.",
|
|
"Sums the values of a b c.",
|
|
]
|
|
expected_src_tokens = [
|
|
134,
|
|
5452,
|
|
33460,
|
|
33441,
|
|
33463,
|
|
33465,
|
|
33463,
|
|
33449,
|
|
988,
|
|
20,
|
|
33456,
|
|
19,
|
|
33456,
|
|
771,
|
|
39,
|
|
4258,
|
|
889,
|
|
3318,
|
|
33441,
|
|
33463,
|
|
33465,
|
|
33463,
|
|
33449,
|
|
2471,
|
|
2,
|
|
PYTHON_CODE,
|
|
]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tokenizer: PLBartTokenizer = PLBartTokenizer.from_pretrained(
|
|
cls.checkpoint_name, language_codes="base", src_lang="python", tgt_lang="en_XX"
|
|
)
|
|
cls.pad_token_id = 1
|
|
return cls
|
|
|
|
def check_language_codes(self):
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"], 50001)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"], 50002)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"], 50003)
|
|
|
|
def test_python_en_tokenizer_batch_encode_plus(self):
|
|
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
|
|
self.assertListEqual(self.expected_src_tokens, ids)
|
|
|
|
def test_python_en_tokenizer_decode_ignores_language_codes(self):
|
|
self.assertIn(PYTHON_CODE, self.tokenizer.all_special_ids)
|
|
generated_ids = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
|
|
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
|
expected_english = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
|
|
self.assertEqual(result, expected_english)
|
|
self.assertNotIn(self.tokenizer.eos_token, result)
|
|
|
|
def test_python_en_tokenizer_truncation(self):
|
|
src_text = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
|
|
self.assertIsInstance(src_text[0], str)
|
|
desired_max_length = 10
|
|
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
|
|
self.assertEqual(ids[-2], 2)
|
|
self.assertEqual(ids[-1], PYTHON_CODE)
|
|
self.assertEqual(len(ids), desired_max_length)
|
|
|
|
def test_mask_token(self):
|
|
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"]), [50004, 50001])
|
|
|
|
def test_special_tokens_unaffacted_by_save_load(self):
|
|
tmpdirname = tempfile.mkdtemp()
|
|
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
|
|
self.tokenizer.save_pretrained(tmpdirname)
|
|
new_tok = PLBartTokenizer.from_pretrained(tmpdirname)
|
|
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
|
|
|
|
@require_torch
|
|
def test_batch_fairseq_parity(self):
|
|
batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt")
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
|
|
|
|
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
|
|
self.assertEqual(batch.input_ids[1][-2:].tolist(), [2, PYTHON_CODE])
|
|
self.assertEqual(batch.decoder_input_ids[1][0], EN_CODE)
|
|
self.assertEqual(batch.decoder_input_ids[1][-1], 2)
|
|
self.assertEqual(batch.labels[1][-2:].tolist(), [2, EN_CODE])
|
|
|
|
@require_torch
|
|
def test_python_en_tokenizer_prepare_batch(self):
|
|
batch = self.tokenizer(
|
|
self.src_text,
|
|
text_target=self.tgt_text,
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=len(self.expected_src_tokens),
|
|
return_tensors="pt",
|
|
)
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
|
|
|
|
self.assertIsInstance(batch, BatchEncoding)
|
|
|
|
self.assertEqual((2, 26), batch.input_ids.shape)
|
|
self.assertEqual((2, 26), batch.attention_mask.shape)
|
|
result = batch.input_ids.tolist()[0]
|
|
self.assertListEqual(self.expected_src_tokens, result)
|
|
self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS
|
|
# Test that special tokens are reset
|
|
self.assertEqual(self.tokenizer.prefix_tokens, [])
|
|
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, PYTHON_CODE])
|
|
|
|
def test_seq2seq_max_length(self):
|
|
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
|
|
targets = self.tokenizer(
|
|
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
|
|
)
|
|
labels = targets["input_ids"]
|
|
batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)
|
|
|
|
self.assertEqual(batch.input_ids.shape[1], 3)
|
|
self.assertEqual(batch.decoder_input_ids.shape[1], 10)
|
|
|
|
@require_torch
|
|
def test_tokenizer_translation(self):
|
|
inputs = self.tokenizer._build_translation_inputs(
|
|
"A test", return_tensors="pt", src_lang="en_XX", tgt_lang="java"
|
|
)
|
|
|
|
self.assertEqual(
|
|
nested_simplify(inputs),
|
|
{
|
|
# A, test, EOS, en_XX
|
|
"input_ids": [[150, 242, 2, 50003]],
|
|
"attention_mask": [[1, 1, 1, 1]],
|
|
# java
|
|
"forced_bos_token_id": 50001,
|
|
},
|
|
)
|