599 lines
25 KiB
Python
599 lines
25 KiB
Python
# coding=utf-8
|
|
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch PEGASUS model."""
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import PegasusConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_torch,
|
|
require_torch_fp16,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import cached_property
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
from ..mbart.test_modeling_mbart import AbstractSeq2SeqIntegrationTest
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import AutoModelForSeq2SeqLM, PegasusForConditionalGeneration, PegasusModel
|
|
from transformers.models.pegasus.modeling_pegasus import PegasusDecoder, PegasusEncoder, PegasusForCausalLM
|
|
|
|
|
|
def prepare_pegasus_inputs_dict(
|
|
config,
|
|
input_ids,
|
|
decoder_input_ids,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
):
|
|
if attention_mask is None:
|
|
attention_mask = input_ids.ne(config.pad_token_id)
|
|
if decoder_attention_mask is None:
|
|
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
|
|
if head_mask is None:
|
|
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
|
|
if decoder_head_mask is None:
|
|
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
|
|
if cross_attn_head_mask is None:
|
|
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
|
|
return {
|
|
"input_ids": input_ids,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
"decoder_attention_mask": attention_mask,
|
|
"head_mask": head_mask,
|
|
"decoder_head_mask": decoder_head_mask,
|
|
"cross_attn_head_mask": cross_attn_head_mask,
|
|
}
|
|
|
|
|
|
class PegasusModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=20,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
|
|
# forcing a certain token to be generated, sets all other tokens to -inf
|
|
# if however the token to be generated is already at -inf then it can lead token
|
|
# `nan` values and thus break generation
|
|
self.forced_bos_token_id = None
|
|
self.forced_eos_token_id = None
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
|
|
3,
|
|
)
|
|
input_ids[:, -1] = self.eos_token_id # Eos Token
|
|
|
|
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
config = self.get_config()
|
|
inputs_dict = prepare_pegasus_inputs_dict(config, input_ids, decoder_input_ids)
|
|
return config, inputs_dict
|
|
|
|
def get_pipeline_config(self):
|
|
return PegasusConfig(
|
|
vocab_size=200,
|
|
d_model=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
encoder_ffn_dim=self.intermediate_size,
|
|
decoder_ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=200,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
)
|
|
|
|
def get_config(self):
|
|
return PegasusConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
encoder_ffn_dim=self.intermediate_size,
|
|
decoder_ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
forced_bos_token_id=self.forced_bos_token_id,
|
|
forced_eos_token_id=self.forced_eos_token_id,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
|
|
model = PegasusModel(config=config).get_decoder().to(torch_device).eval()
|
|
input_ids = inputs_dict["input_ids"]
|
|
attention_mask = inputs_dict["attention_mask"]
|
|
head_mask = inputs_dict["head_mask"]
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
|
|
|
|
output, past_key_values = outputs.to_tuple()
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
|
|
"last_hidden_state"
|
|
]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
|
|
model = PegasusModel(config=config).to(torch_device).eval()
|
|
outputs = model(**inputs_dict)
|
|
|
|
encoder_last_hidden_state = outputs.encoder_last_hidden_state
|
|
last_hidden_state = outputs.last_hidden_state
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
encoder = model.get_encoder()
|
|
encoder.save_pretrained(tmpdirname)
|
|
encoder = PegasusEncoder.from_pretrained(tmpdirname).to(torch_device)
|
|
|
|
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
|
|
0
|
|
]
|
|
|
|
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
decoder = model.get_decoder()
|
|
decoder.save_pretrained(tmpdirname)
|
|
decoder = PegasusDecoder.from_pretrained(tmpdirname).to(torch_device)
|
|
|
|
last_hidden_state_2 = decoder(
|
|
input_ids=inputs_dict["decoder_input_ids"],
|
|
attention_mask=inputs_dict["decoder_attention_mask"],
|
|
encoder_hidden_states=encoder_last_hidden_state,
|
|
encoder_attention_mask=inputs_dict["attention_mask"],
|
|
)[0]
|
|
|
|
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
|
|
|
|
|
|
@require_torch
|
|
class PegasusModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (PegasusModel, PegasusForConditionalGeneration) if is_torch_available() else ()
|
|
all_generative_model_classes = (PegasusForConditionalGeneration,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"conversational": PegasusForConditionalGeneration,
|
|
"feature-extraction": PegasusModel,
|
|
"summarization": PegasusForConditionalGeneration,
|
|
"text-generation": PegasusForCausalLM,
|
|
"text2text-generation": PegasusForConditionalGeneration,
|
|
"translation": PegasusForConditionalGeneration,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
is_encoder_decoder = True
|
|
fx_compatible = True
|
|
test_resize_position_embeddings = True
|
|
test_pruning = False
|
|
test_missing_keys = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = PegasusModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=PegasusConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_save_load_strict(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
|
|
self.assertEqual(info["missing_keys"], [])
|
|
|
|
def test_decoder_model_past_with_large_inputs(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_encoder_decoder_model_standalone(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
|
|
|
|
@require_torch_fp16
|
|
def test_generate_fp16(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs()
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
model = PegasusForConditionalGeneration(config).eval().to(torch_device)
|
|
model.half()
|
|
model.generate(input_ids, attention_mask=attention_mask)
|
|
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
|
|
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
|
|
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
|
|
if a is None and b is None:
|
|
return True
|
|
try:
|
|
if torch.allclose(a, b, atol=atol):
|
|
return True
|
|
raise
|
|
except Exception:
|
|
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
|
|
if a.numel() > 100:
|
|
msg = f"tensor values are {pct_different:.1%} percent different."
|
|
else:
|
|
msg = f"{a} != {b}"
|
|
if prefix:
|
|
msg = prefix + ": " + msg
|
|
raise AssertionError(msg)
|
|
|
|
|
|
def _long_tensor(tok_lst):
|
|
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class PegasusXSUMIntegrationTest(AbstractSeq2SeqIntegrationTest):
|
|
checkpoint_name = "google/pegasus-xsum"
|
|
src_text = [
|
|
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
|
|
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning 'Oh I think you're nominated'", said Dappy."And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around."At the end of the day we're grateful to be where we are in our careers."If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" """,
|
|
]
|
|
|
|
tgt_text = [
|
|
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
|
|
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
|
|
]
|
|
|
|
@cached_property
|
|
def model(self):
|
|
return AutoModelForSeq2SeqLM.from_pretrained(self.checkpoint_name).to(torch_device)
|
|
|
|
@slow
|
|
@require_torch_fp16
|
|
def test_pegasus_xsum_summary(self):
|
|
assert self.tokenizer.model_max_length == 512
|
|
inputs = self.tokenizer(self.src_text, return_tensors="pt", truncation=True, max_length=512, padding=True).to(
|
|
torch_device
|
|
)
|
|
assert inputs.input_ids.shape == (2, 421)
|
|
translated_tokens = self.model.generate(**inputs, num_beams=2)
|
|
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
|
|
assert self.tgt_text == decoded
|
|
|
|
self.model.half()
|
|
translated_tokens_fp16 = self.model.generate(**inputs, max_length=10)
|
|
decoded_fp16 = self.tokenizer.batch_decode(translated_tokens_fp16, skip_special_tokens=True)
|
|
assert decoded_fp16 == [
|
|
"California's largest electricity provider has begun",
|
|
"N-Dubz have revealed they were",
|
|
]
|
|
|
|
|
|
class PegasusStandaloneDecoderModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
vocab_size=99,
|
|
batch_size=13,
|
|
d_model=16,
|
|
decoder_seq_length=7,
|
|
is_training=True,
|
|
is_decoder=True,
|
|
use_attention_mask=True,
|
|
use_cache=False,
|
|
use_labels=True,
|
|
decoder_start_token_id=2,
|
|
decoder_ffn_dim=32,
|
|
decoder_layers=2,
|
|
encoder_attention_heads=4,
|
|
decoder_attention_heads=4,
|
|
max_position_embeddings=30,
|
|
is_encoder_decoder=False,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.decoder_seq_length = decoder_seq_length
|
|
# For common tests
|
|
self.seq_length = self.decoder_seq_length
|
|
self.is_training = is_training
|
|
self.use_attention_mask = use_attention_mask
|
|
self.use_labels = use_labels
|
|
|
|
self.vocab_size = vocab_size
|
|
self.d_model = d_model
|
|
self.hidden_size = d_model
|
|
self.num_hidden_layers = decoder_layers
|
|
self.decoder_layers = decoder_layers
|
|
self.decoder_ffn_dim = decoder_ffn_dim
|
|
self.encoder_attention_heads = encoder_attention_heads
|
|
self.decoder_attention_heads = decoder_attention_heads
|
|
self.num_attention_heads = decoder_attention_heads
|
|
self.eos_token_id = eos_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.decoder_start_token_id = decoder_start_token_id
|
|
self.use_cache = use_cache
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.is_encoder_decoder = is_encoder_decoder
|
|
|
|
self.scope = None
|
|
self.decoder_key_length = decoder_seq_length
|
|
self.base_model_out_len = 2
|
|
self.decoder_attention_idx = 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
|
|
|
|
attention_mask = None
|
|
if self.use_attention_mask:
|
|
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
|
|
|
|
lm_labels = None
|
|
if self.use_labels:
|
|
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
|
|
|
|
config = PegasusConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.d_model,
|
|
decoder_layers=self.decoder_layers,
|
|
decoder_ffn_dim=self.decoder_ffn_dim,
|
|
encoder_attention_heads=self.encoder_attention_heads,
|
|
decoder_attention_heads=self.decoder_attention_heads,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
use_cache=self.use_cache,
|
|
pad_token_id=self.pad_token_id,
|
|
decoder_start_token_id=self.decoder_start_token_id,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
is_encoder_decoder=self.is_encoder_decoder,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
)
|
|
|
|
def create_and_check_decoder_model_past(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
):
|
|
config.use_cache = True
|
|
model = PegasusDecoder(config=config).to(torch_device).eval()
|
|
# first forward pass
|
|
outputs = model(input_ids, use_cache=True)
|
|
outputs_use_cache_conf = model(input_ids)
|
|
outputs_no_past = model(input_ids, use_cache=False)
|
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
|
|
|
past_key_values = outputs["past_key_values"]
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
|
|
output_from_no_past = model(next_input_ids)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
|
|
|
# test that outputs are equal for slice
|
|
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
|
|
|
|
def create_and_check_decoder_model_attention_mask_past(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
):
|
|
model = PegasusDecoder(config=config).to(torch_device).eval()
|
|
|
|
# create attention mask
|
|
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
|
|
|
|
half_seq_length = input_ids.shape[-1] // 2
|
|
attn_mask[:, half_seq_length:] = 0
|
|
|
|
# first forward pass
|
|
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
|
|
|
# change a random masked slice from input_ids
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
|
|
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
|
|
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
|
|
|
|
# append to next input_ids and attn_mask
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
attn_mask = torch.cat(
|
|
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
|
|
dim=1,
|
|
)
|
|
|
|
# get two different outputs
|
|
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
|
|
"last_hidden_state"
|
|
]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
|
|
|
# test that outputs are equal for slice
|
|
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class PegasusStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (PegasusDecoder, PegasusForCausalLM) if is_torch_available() else ()
|
|
all_generative_model_classes = (PegasusForCausalLM,) if is_torch_available() else ()
|
|
test_resize_position_embeddings = True
|
|
test_pruning = False
|
|
is_encoder_decoder = False
|
|
|
|
def setUp(
|
|
self,
|
|
):
|
|
self.model_tester = PegasusStandaloneDecoderModelTester(self, is_training=False)
|
|
self.config_tester = ConfigTester(self, config_class=PegasusConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_decoder_model_past(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
|
|
|
|
def test_decoder_model_attn_mask_past(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
# decoder cannot keep gradients
|
|
return
|