569 lines
23 KiB
Python
569 lines
23 KiB
Python
# coding=utf-8
|
||
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""Testing suite for the PyTorch OPT model."""
|
||
|
||
import copy
|
||
import tempfile
|
||
import unittest
|
||
|
||
import timeout_decorator # noqa
|
||
|
||
from transformers import OPTConfig, is_torch_available
|
||
from transformers.testing_utils import require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device
|
||
|
||
from ...generation.test_utils import GenerationTesterMixin
|
||
from ...test_configuration_common import ConfigTester
|
||
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
||
from ...test_pipeline_mixin import PipelineTesterMixin
|
||
|
||
|
||
if is_torch_available():
|
||
import torch
|
||
|
||
from transformers import (
|
||
GPT2Tokenizer,
|
||
OPTForCausalLM,
|
||
OPTForQuestionAnswering,
|
||
OPTForSequenceClassification,
|
||
OPTModel,
|
||
)
|
||
|
||
|
||
def prepare_opt_inputs_dict(
|
||
config,
|
||
input_ids,
|
||
decoder_input_ids=None,
|
||
attention_mask=None,
|
||
decoder_attention_mask=None,
|
||
head_mask=None,
|
||
decoder_head_mask=None,
|
||
):
|
||
if attention_mask is None:
|
||
attention_mask = input_ids.ne(config.pad_token_id)
|
||
return {
|
||
"input_ids": input_ids,
|
||
"attention_mask": attention_mask,
|
||
"head_mask": head_mask,
|
||
}
|
||
|
||
|
||
class OPTModelTester:
|
||
def __init__(
|
||
self,
|
||
parent,
|
||
batch_size=13,
|
||
seq_length=7,
|
||
is_training=True,
|
||
use_labels=False,
|
||
vocab_size=99,
|
||
hidden_size=16,
|
||
num_hidden_layers=2,
|
||
num_attention_heads=4,
|
||
intermediate_size=4,
|
||
hidden_act="gelu",
|
||
hidden_dropout_prob=0.1,
|
||
attention_probs_dropout_prob=0.1,
|
||
max_position_embeddings=20,
|
||
eos_token_id=2,
|
||
pad_token_id=1,
|
||
bos_token_id=0,
|
||
embed_dim=16,
|
||
num_labels=3,
|
||
word_embed_proj_dim=16,
|
||
type_sequence_label_size=2,
|
||
):
|
||
self.parent = parent
|
||
self.batch_size = batch_size
|
||
self.seq_length = seq_length
|
||
self.is_training = is_training
|
||
self.use_labels = use_labels
|
||
self.vocab_size = vocab_size
|
||
self.hidden_size = hidden_size
|
||
self.num_hidden_layers = num_hidden_layers
|
||
self.num_attention_heads = num_attention_heads
|
||
self.intermediate_size = intermediate_size
|
||
self.hidden_act = hidden_act
|
||
self.hidden_dropout_prob = hidden_dropout_prob
|
||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.eos_token_id = eos_token_id
|
||
self.pad_token_id = pad_token_id
|
||
self.bos_token_id = bos_token_id
|
||
self.embed_dim = embed_dim
|
||
self.num_labels = num_labels
|
||
self.type_sequence_label_size = type_sequence_label_size
|
||
self.word_embed_proj_dim = word_embed_proj_dim
|
||
self.is_encoder_decoder = False
|
||
|
||
def prepare_config_and_inputs(self):
|
||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
|
||
3,
|
||
)
|
||
input_ids[:, -1] = self.eos_token_id # Eos Token
|
||
|
||
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||
|
||
config = self.get_config()
|
||
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
|
||
return config, inputs_dict
|
||
|
||
def get_config(self):
|
||
return OPTConfig(
|
||
vocab_size=self.vocab_size,
|
||
hidden_size=self.hidden_size,
|
||
num_hidden_layers=self.num_hidden_layers,
|
||
num_attention_heads=self.num_attention_heads,
|
||
ffn_dim=self.intermediate_size,
|
||
dropout=self.hidden_dropout_prob,
|
||
attention_dropout=self.attention_probs_dropout_prob,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
eos_token_id=self.eos_token_id,
|
||
bos_token_id=self.bos_token_id,
|
||
pad_token_id=self.pad_token_id,
|
||
embed_dim=self.embed_dim,
|
||
is_encoder_decoder=False,
|
||
word_embed_proj_dim=self.word_embed_proj_dim,
|
||
)
|
||
|
||
def get_pipeline_config(self):
|
||
config = self.get_config()
|
||
config.max_position_embeddings = 100
|
||
return config
|
||
|
||
def prepare_config_and_inputs_for_common(self):
|
||
config, inputs_dict = self.prepare_config_and_inputs()
|
||
return config, inputs_dict
|
||
|
||
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
|
||
model = OPTModel(config=config).to(torch_device).eval()
|
||
|
||
input_ids = inputs_dict["input_ids"]
|
||
attention_mask = inputs_dict["attention_mask"]
|
||
head_mask = inputs_dict["head_mask"]
|
||
|
||
# first forward pass
|
||
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
|
||
|
||
output, past_key_values = outputs.to_tuple()
|
||
|
||
# create hypothetical multiple next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
||
|
||
# append to next input_ids and
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
|
||
|
||
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
|
||
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
|
||
"last_hidden_state"
|
||
]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||
|
||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
# test no attention_mask works
|
||
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
|
||
_, past_key_values = outputs.to_tuple()
|
||
output_from_no_past = model(next_input_ids)["last_hidden_state"]
|
||
|
||
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
|
||
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
|
||
@require_torch
|
||
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||
all_model_classes = (
|
||
(OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering)
|
||
if is_torch_available()
|
||
else ()
|
||
)
|
||
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
|
||
pipeline_model_mapping = (
|
||
{
|
||
"feature-extraction": OPTModel,
|
||
"question-answering": OPTForQuestionAnswering,
|
||
"text-classification": OPTForSequenceClassification,
|
||
"text-generation": OPTForCausalLM,
|
||
"zero-shot": OPTForSequenceClassification,
|
||
}
|
||
if is_torch_available()
|
||
else {}
|
||
)
|
||
is_encoder_decoder = False
|
||
fx_compatible = True
|
||
test_pruning = False
|
||
test_missing_keys = False
|
||
|
||
# TODO: Fix the failed tests
|
||
def is_pipeline_test_to_skip(
|
||
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
||
):
|
||
if (
|
||
pipeline_test_casse_name == "QAPipelineTests"
|
||
and tokenizer_name is not None
|
||
and not tokenizer_name.endswith("Fast")
|
||
):
|
||
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
|
||
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
|
||
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
|
||
return True
|
||
|
||
return False
|
||
|
||
def setUp(self):
|
||
self.model_tester = OPTModelTester(self)
|
||
self.config_tester = ConfigTester(self, config_class=OPTConfig)
|
||
|
||
def test_config(self):
|
||
self.config_tester.run_common_tests()
|
||
|
||
def test_save_load_strict(self):
|
||
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
||
for model_class in self.all_model_classes:
|
||
model = model_class(config)
|
||
|
||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||
model.save_pretrained(tmpdirname)
|
||
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
|
||
self.assertEqual(info["missing_keys"], [])
|
||
|
||
def test_decoder_model_past_with_large_inputs(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
||
|
||
def test_inputs_embeds(self):
|
||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||
|
||
for model_class in (OPTModel,):
|
||
model = model_class(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
|
||
|
||
if not self.is_encoder_decoder:
|
||
input_ids = inputs["input_ids"]
|
||
del inputs["input_ids"]
|
||
else:
|
||
encoder_input_ids = inputs["input_ids"]
|
||
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
|
||
del inputs["input_ids"]
|
||
inputs.pop("decoder_input_ids", None)
|
||
|
||
wte = model.get_input_embeddings()
|
||
if not self.is_encoder_decoder:
|
||
inputs["inputs_embeds"] = wte(input_ids)
|
||
else:
|
||
inputs["inputs_embeds"] = wte(encoder_input_ids)
|
||
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
|
||
|
||
with torch.no_grad():
|
||
model(**inputs)[0]
|
||
|
||
@require_torch_fp16
|
||
def test_generate_fp16(self):
|
||
config, input_dict = self.model_tester.prepare_config_and_inputs()
|
||
input_ids = input_dict["input_ids"]
|
||
attention_mask = input_ids.ne(1).to(torch_device)
|
||
model = OPTForCausalLM(config).eval().to(torch_device)
|
||
model.half()
|
||
model.generate(input_ids, attention_mask=attention_mask)
|
||
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
|
||
|
||
def test_opt_sequence_classification_model(self):
|
||
config, input_dict = self.model_tester.prepare_config_and_inputs()
|
||
config.num_labels = 3
|
||
input_ids = input_dict["input_ids"]
|
||
attention_mask = input_ids.ne(1).to(torch_device)
|
||
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
||
model = OPTForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
||
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
||
|
||
def test_opt_sequence_classification_model_for_multi_label(self):
|
||
config, input_dict = self.model_tester.prepare_config_and_inputs()
|
||
config.num_labels = 3
|
||
config.problem_type = "multi_label_classification"
|
||
input_ids = input_dict["input_ids"]
|
||
attention_mask = input_ids.ne(1).to(torch_device)
|
||
sequence_labels = ids_tensor(
|
||
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
|
||
).to(torch.float)
|
||
model = OPTForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
||
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
||
|
||
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
|
||
def test_model_parallelism(self):
|
||
super().test_model_parallelism()
|
||
|
||
|
||
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
|
||
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
|
||
if a is None and b is None:
|
||
return True
|
||
try:
|
||
if torch.allclose(a, b, atol=atol):
|
||
return True
|
||
raise
|
||
except Exception:
|
||
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
|
||
if a.numel() > 100:
|
||
msg = f"tensor values are {pct_different:.1%} percent different."
|
||
else:
|
||
msg = f"{a} != {b}"
|
||
if prefix:
|
||
msg = prefix + ": " + msg
|
||
raise AssertionError(msg)
|
||
|
||
|
||
def _long_tensor(tok_lst):
|
||
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
|
||
|
||
|
||
@require_torch
|
||
class OPTModelIntegrationTests(unittest.TestCase):
|
||
@slow
|
||
def test_inference_no_head(self):
|
||
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
|
||
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
||
|
||
with torch.no_grad():
|
||
output = model(input_ids=input_ids).last_hidden_state
|
||
|
||
expected_shape = torch.Size((1, 11, 512))
|
||
self.assertEqual(output.shape, expected_shape)
|
||
# expected value works for CPU, as well as GPU (with TF32 disabled)
|
||
expected_slice = torch.tensor(
|
||
[
|
||
[-0.28726277, -1.9241608, -0.3058734],
|
||
[-1.2737825, -0.13332152, -0.18766522],
|
||
[0.41159445, 0.1191957, -1.3107123],
|
||
],
|
||
device=torch_device,
|
||
)
|
||
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
|
||
|
||
|
||
@require_torch
|
||
@slow
|
||
class OPTEmbeddingsTest(unittest.TestCase):
|
||
def setUp(self):
|
||
super().setUp()
|
||
self.path_model = "facebook/opt-350m"
|
||
|
||
def test_load_model(self):
|
||
try:
|
||
_ = OPTForCausalLM.from_pretrained(self.path_model)
|
||
except BaseException:
|
||
self.fail("Failed loading model")
|
||
|
||
def test_logits(self):
|
||
model = OPTForCausalLM.from_pretrained(self.path_model)
|
||
model = model.eval()
|
||
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
|
||
|
||
prompts = [
|
||
"Today is a beautiful day and I want to",
|
||
"In the city of",
|
||
"Paris is the capital of France and",
|
||
"Computers and mobile phones have taken",
|
||
]
|
||
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
|
||
inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False)
|
||
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1)
|
||
# logits_meta = torch.load(self.path_logits_meta)
|
||
logits_meta = torch.Tensor(
|
||
[
|
||
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
|
||
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
|
||
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
|
||
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
|
||
]
|
||
)
|
||
assert torch.allclose(logits, logits_meta, atol=1e-4)
|
||
|
||
|
||
@slow
|
||
class OPTGenerationTest(unittest.TestCase):
|
||
@property
|
||
def prompts(self):
|
||
return [
|
||
"Today is a beautiful day and I want",
|
||
"In the city of",
|
||
"Paris is the capital of France and",
|
||
"Computers and mobile phones have taken",
|
||
]
|
||
|
||
def test_generation_pre_attn_layer_norm(self):
|
||
model_id = "facebook/opt-125m"
|
||
|
||
EXPECTED_OUTPUTS = [
|
||
"Today is a beautiful day and I want to",
|
||
"In the city of New York, the city",
|
||
"Paris is the capital of France and the capital",
|
||
"Computers and mobile phones have taken over the",
|
||
]
|
||
|
||
predicted_outputs = []
|
||
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
||
model = OPTForCausalLM.from_pretrained(model_id)
|
||
|
||
for prompt in self.prompts:
|
||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||
|
||
generated_ids = model.generate(input_ids, max_length=10)
|
||
|
||
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||
predicted_outputs += generated_string
|
||
|
||
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
|
||
|
||
def test_batch_generation(self):
|
||
model_id = "facebook/opt-350m"
|
||
|
||
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
||
model = OPTForCausalLM.from_pretrained(model_id)
|
||
model.to(torch_device)
|
||
|
||
tokenizer.padding_side = "left"
|
||
|
||
# use different length sentences to test batching
|
||
sentences = [
|
||
"Hello, my dog is a little",
|
||
"Today, I",
|
||
]
|
||
|
||
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
|
||
input_ids = inputs["input_ids"].to(torch_device)
|
||
|
||
outputs = model.generate(
|
||
input_ids=input_ids,
|
||
attention_mask=inputs["attention_mask"].to(torch_device),
|
||
)
|
||
|
||
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
|
||
output_non_padded = model.generate(input_ids=inputs_non_padded)
|
||
|
||
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
|
||
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
|
||
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
|
||
|
||
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
|
||
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
|
||
|
||
expected_output_sentence = [
|
||
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
|
||
"Today, I was in the middle of a conversation with a friend about the",
|
||
]
|
||
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
||
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
|
||
|
||
def test_generation_post_attn_layer_norm(self):
|
||
model_id = "facebook/opt-350m"
|
||
|
||
EXPECTED_OUTPUTS = [
|
||
"Today is a beautiful day and I want to",
|
||
"In the city of San Francisco, the city",
|
||
"Paris is the capital of France and the capital",
|
||
"Computers and mobile phones have taken over the",
|
||
]
|
||
|
||
predicted_outputs = []
|
||
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
||
model = OPTForCausalLM.from_pretrained(model_id)
|
||
|
||
for prompt in self.prompts:
|
||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||
|
||
generated_ids = model.generate(input_ids, max_length=10)
|
||
|
||
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||
predicted_outputs += generated_string
|
||
|
||
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
|
||
|
||
@require_torch_accelerator
|
||
@require_torch_fp16
|
||
def test_batched_nan_fp16(self):
|
||
# a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations,
|
||
# therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b.
|
||
# please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details
|
||
model_name = "facebook/opt-1.3b"
|
||
tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")
|
||
|
||
model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).to(torch_device)
|
||
model = model.eval()
|
||
|
||
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")
|
||
|
||
input_ids = batch["input_ids"].to(torch_device)
|
||
attention_mask = batch["attention_mask"].to(torch_device)
|
||
|
||
with torch.no_grad():
|
||
outputs = model(input_ids, attention_mask=attention_mask)
|
||
self.assertFalse(
|
||
torch.isnan(outputs.logits[0]).any().item()
|
||
) # the first logits could contain NaNs if it fails
|
||
|
||
@slow
|
||
def test_contrastive_search_opt(self):
|
||
article = (
|
||
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
|
||
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
|
||
"there?"
|
||
)
|
||
|
||
opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b")
|
||
opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device)
|
||
input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
|
||
|
||
outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256)
|
||
generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||
|
||
self.assertListEqual(
|
||
generated_text,
|
||
[
|
||
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I "
|
||
"am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have "
|
||
"you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United "
|
||
"States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my "
|
||
"country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your "
|
||
"country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They "
|
||
"were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, "
|
||
"Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from "
|
||
"every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in "
|
||
"France.\nHuman: And your parents were French?\nStatue"
|
||
],
|
||
)
|