175 lines
6.4 KiB
Python
175 lines
6.4 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests for the MusicGen processor."""
|
|
|
|
import random
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import T5Tokenizer, T5TokenizerFast
|
|
from transformers.testing_utils import require_sentencepiece, require_torch
|
|
from transformers.utils.import_utils import is_speech_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
pass
|
|
|
|
if is_speech_available():
|
|
from transformers import EncodecFeatureExtractor, MusicgenProcessor
|
|
|
|
|
|
global_rng = random.Random()
|
|
|
|
|
|
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
|
|
def floats_list(shape, scale=1.0, rng=None, name=None):
|
|
"""Creates a random float32 tensor"""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
values = []
|
|
for batch_idx in range(shape[0]):
|
|
values.append([])
|
|
for _ in range(shape[1]):
|
|
values[-1].append(rng.random() * scale)
|
|
|
|
return values
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
class MusicgenProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.checkpoint = "facebook/musicgen-small"
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return T5Tokenizer.from_pretrained(self.checkpoint, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return EncodecFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
|
|
processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = MusicgenProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, T5TokenizerFast)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, EncodecFeatureExtractor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = MusicgenProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = MusicgenProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, T5TokenizerFast)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, EncodecFeatureExtractor)
|
|
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
raw_speech = floats_list((3, 1000))
|
|
|
|
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
|
|
input_processor = processor(raw_speech, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "This is a test string"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(sequences=predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
self.assertListEqual(
|
|
processor.model_input_names,
|
|
feature_extractor.model_input_names,
|
|
msg="`processor` and `feature_extractor` model input names do not match",
|
|
)
|
|
|
|
def test_decode_audio(self):
|
|
feature_extractor = self.get_feature_extractor(padding_side="left")
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
raw_speech = [floats_list((1, x))[0] for x in range(5, 20, 5)]
|
|
padding_mask = processor(raw_speech).padding_mask
|
|
|
|
generated_speech = np.asarray(floats_list((3, 20)))[:, None, :]
|
|
decoded_audios = processor.batch_decode(generated_speech, padding_mask=padding_mask)
|
|
|
|
self.assertIsInstance(decoded_audios, list)
|
|
|
|
for audio in decoded_audios:
|
|
self.assertIsInstance(audio, np.ndarray)
|
|
|
|
self.assertTrue(decoded_audios[0].shape == (1, 10))
|
|
self.assertTrue(decoded_audios[1].shape == (1, 15))
|
|
self.assertTrue(decoded_audios[2].shape == (1, 20))
|