transformers/tests/models/mobilevitv2/test_modeling_mobilevitv2.py

377 lines
14 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch MobileViTV2 model."""
import unittest
from transformers import MobileViTV2Config
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, MobileViTV2Model
from transformers.models.mobilevitv2.modeling_mobilevitv2 import (
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class MobileViTV2ConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "width_multiplier"))
class MobileViTV2ModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
patch_size=2,
num_channels=3,
hidden_act="swish",
conv_kernel_size=3,
output_stride=32,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
width_multiplier=0.25,
ffn_dropout=0.0,
attn_dropout=0.0,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.last_hidden_size = make_divisible(512 * width_multiplier, divisor=8)
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
self.width_multiplier = width_multiplier
self.ffn_dropout_prob = ffn_dropout
self.attn_dropout_prob = attn_dropout
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileViTV2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_act=self.hidden_act,
conv_kernel_size=self.conv_kernel_size,
output_stride=self.output_stride,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
width_multiplier=self.width_multiplier,
ffn_dropout=self.ffn_dropout_prob,
attn_dropout=self.attn_dropout_prob,
base_attn_unit_dims=[16, 24, 32],
n_attn_blocks=[1, 1, 2],
aspp_out_channels=32,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileViTV2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTV2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTV2ForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViTV2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(MobileViTV2Model, MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"image-feature-extraction": MobileViTV2Model,
"image-classification": MobileViTV2ForImageClassification,
"image-segmentation": MobileViTV2ForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileViTV2ModelTester(self)
self.config_tester = MobileViTV2ConfigTester(self, config_class=MobileViTV2Config, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileViTV2 does not output attentions")
def test_attention_outputs(self):
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run.")
def test_multi_gpu_data_parallel_forward(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 5
self.assertEqual(len(hidden_states), expected_num_stages)
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
divisor = 2
for i in range(len(hidden_states)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]),
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
)
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "apple/mobilevitv2-1.0-imagenet1k-256"
model = MobileViTV2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileViTV2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
if is_vision_available()
else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileViTV2ForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256").to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_semantic_segmentation(self):
model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21, 32, 32))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
@slow
def test_post_processing_semantic_segmentation(self):
model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)])
expected_shape = torch.Size((50, 60))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((32, 32))
self.assertEqual(segmentation[0].shape, expected_shape)