transformers/tests/models/mluke/test_tokenization_mluke.py

677 lines
30 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Tuple
from transformers.models.mluke.tokenization_mluke import MLukeTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json")
class MLukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "studio-ousia/mluke-base"
tokenizer_class = MLukeTokenizer
test_rust_tokenizer = False
from_pretrained_kwargs = {"cls_token": "<s>"}
def setUp(self):
super().setUp()
self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"}
def get_tokenizer(self, task=None, **kwargs):
kwargs.update(self.special_tokens_map)
kwargs.update({"task": task})
tokenizer = MLukeTokenizer(vocab_file=SAMPLE_VOCAB, entity_vocab_file=SAMPLE_ENTITY_VOCAB, **kwargs)
return tokenizer
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
text = "lower newer"
spm_tokens = ["▁l", "ow", "er", "▁new", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, spm_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_spm_tokens = [149, 116, 40, 410, 40] + [3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_spm_tokens)
def mluke_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [35378, 8999, 38])
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
[35378, 8999, 38, 33273, 11676, 604, 365, 21392, 201, 1819],
)
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("hf-internal-testing/tiny-random-mluke")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_text_from_decode = tokenizer.encode(
"sequence builders", add_special_tokens=True, add_prefix_space=False
)
encoded_pair_from_decode = tokenizer.encode(
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
self.assertEqual(encoded_sentence, encoded_text_from_decode)
self.assertEqual(encoded_pair, encoded_pair_from_decode)
def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]:
txt = "Beyonce lives in Los Angeles"
ids = tokenizer.encode(txt, add_special_tokens=False)
return txt, ids
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
def test_padding_entity_inputs(self):
tokenizer = self.get_tokenizer()
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
span = (15, 34)
pad_id = tokenizer.entity_vocab["[PAD]"]
mask_id = tokenizer.entity_vocab["[MASK]"]
encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True)
self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]])
# test with a sentence with no entity
encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True)
self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]])
def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer()
sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and Afghanistan."
entities = ["DUMMY"]
spans = [(0, 9)]
with self.assertRaises(ValueError):
tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
with self.assertRaises(ValueError):
tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
with self.assertRaises(ValueError):
tokenizer(sentence, entities=[0], entity_spans=spans)
with self.assertRaises(ValueError):
tokenizer(sentence, entities=entities, entity_spans=[0])
with self.assertRaises(ValueError):
tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)])
def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer(task="entity_classification")
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
span = (15, 34)
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[span, span])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[0])
def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer(task="entity_pair_classification")
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
# head and tail information
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[0, 0])
def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer(task="entity_span_classification")
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[0, 0, 0])
@slow
@require_torch
class MLukeTokenizerIntegrationTests(unittest.TestCase):
tokenizer_class = MLukeTokenizer
from_pretrained_kwargs = {"cls_token": "<s>"}
@classmethod
def setUpClass(cls):
cls.tokenizer = MLukeTokenizer.from_pretrained("studio-ousia/mluke-base", return_token_type_ids=True)
cls.entity_classification_tokenizer = MLukeTokenizer.from_pretrained(
"studio-ousia/mluke-base", return_token_type_ids=True, task="entity_classification"
)
cls.entity_pair_tokenizer = MLukeTokenizer.from_pretrained(
"studio-ousia/mluke-base", return_token_type_ids=True, task="entity_pair_classification"
)
cls.entity_span_tokenizer = MLukeTokenizer.from_pretrained(
"studio-ousia/mluke-base", return_token_type_ids=True, task="entity_span_classification"
)
def test_single_text_no_padding_or_truncation(self):
tokenizer = self.tokenizer
sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
entities = ["en:ISO 639-3", "DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"]
spans = [(0, 9), (59, 63), (68, 75), (77, 88)]
encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s> ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン ( Afghanistan ).</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][17], spaces_between_special_tokens=False), "Iran")
self.assertEqual(
tokenizer.decode(encoding["input_ids"][19:25], spaces_between_special_tokens=False), "アフガニスタン"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][26], spaces_between_special_tokens=False), "Afghanistan"
)
self.assertEqual(
encoding["entity_ids"],
[
tokenizer.entity_vocab["en:ISO 639-3"],
tokenizer.entity_vocab["[UNK]"],
tokenizer.entity_vocab["ja:アフガニスタン"],
tokenizer.entity_vocab["en:Afghanistan"],
],
)
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
)
# fmt: on
def test_single_text_only_entity_spans_no_padding_or_truncation(self):
tokenizer = self.tokenizer
sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
entities = ["en:ISO 639-3", "DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"]
spans = [(0, 9), (59, 63), (68, 75), (77, 88)]
encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s> ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン ( Afghanistan ).</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][17], spaces_between_special_tokens=False), "Iran")
self.assertEqual(
tokenizer.decode(encoding["input_ids"][20:25], spaces_between_special_tokens=False), "アフガニスタン"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][26], spaces_between_special_tokens=False), "Afghanistan"
)
self.assertEqual(
encoding["entity_ids"],
[
tokenizer.entity_vocab["en:ISO 639-3"],
tokenizer.entity_vocab["[UNK]"],
tokenizer.entity_vocab["ja:アフガニスタン"],
tokenizer.entity_vocab["en:Afghanistan"],
],
)
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
)
# fmt: on
def test_single_text_padding_pytorch_tensors(self):
tokenizer = self.tokenizer
sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
entities = ["en:ISO 639-3", "DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"]
spans = [(0, 9), (59, 63), (68, 75), (77, 88)]
encoding = tokenizer(
sentence,
entities=entities,
entity_spans=spans,
return_token_type_ids=True,
padding="max_length",
max_length=30,
max_entity_length=16,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
def test_text_pair_no_padding_or_truncation(self):
tokenizer = self.tokenizer
sentence = "ISO 639-3 uses the code fas"
sentence_pair = "for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
entities = ["en:ISO 639-3"]
entities_pair = ["DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"]
spans = [(0, 9)]
spans_pair = [(31, 35), (40, 47), (49, 60)]
encoding = tokenizer(
sentence,
sentence_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=spans,
entity_spans_pair=spans_pair,
return_token_type_ids=True,
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s> ISO 639-3 uses the code fas</s></s> for the dialects spoken across Iran and アフガニスタン ( Afghanistan"
" ).</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][19], spaces_between_special_tokens=False), "Iran")
self.assertEqual(
tokenizer.decode(encoding["input_ids"][21:27], spaces_between_special_tokens=False), "アフガニスタン"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][28], spaces_between_special_tokens=False), "Afghanistan"
)
self.assertEqual(
encoding["entity_ids"],
[
tokenizer.entity_vocab["en:ISO 639-3"],
tokenizer.entity_vocab["[UNK]"],
tokenizer.entity_vocab["ja:アフガニスタン"],
tokenizer.entity_vocab["en:Afghanistan"],
],
)
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[19, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[21, 22, 23, 24, 25, 26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[28, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
)
# fmt: on
def test_text_pair_only_entity_spans_no_padding_or_truncation(self):
tokenizer = self.tokenizer
sentence = "ISO 639-3 uses the code fas"
sentence_pair = "for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
entities = ["en:ISO 639-3"]
entities_pair = ["DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"]
spans = [(0, 9)]
spans_pair = [(31, 35), (40, 47), (49, 60)]
encoding = tokenizer(
sentence,
sentence_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=spans,
entity_spans_pair=spans_pair,
return_token_type_ids=True,
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s> ISO 639-3 uses the code fas</s></s> for the dialects spoken across Iran and アフガニスタン ( Afghanistan"
" ).</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][19], spaces_between_special_tokens=False), "Iran")
self.assertEqual(
tokenizer.decode(encoding["input_ids"][21:27], spaces_between_special_tokens=False), "アフガニスタン"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][28], spaces_between_special_tokens=False), "Afghanistan"
)
self.assertEqual(
encoding["entity_ids"],
[
tokenizer.entity_vocab["en:ISO 639-3"],
tokenizer.entity_vocab["[UNK]"],
tokenizer.entity_vocab["ja:アフガニスタン"],
tokenizer.entity_vocab["en:Afghanistan"],
],
)
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[19, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[21, 22, 23, 24, 25, 26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[28, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
)
# fmt: on
def test_text_pair_padding_pytorch_tensors(self):
tokenizer = self.tokenizer
sentence = "ISO 639-3 uses the code fas"
sentence_pair = "for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
entities = ["en:ISO 639-3"]
entities_pair = ["DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"]
spans = [(0, 9)]
spans_pair = [(31, 35), (40, 47), (49, 60)]
encoding = tokenizer(
sentence,
sentence_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=spans,
entity_spans_pair=spans_pair,
return_token_type_ids=True,
padding="max_length",
max_length=40,
max_entity_length=16,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 40))
self.assertEqual(encoding["attention_mask"].shape, (1, 40))
self.assertEqual(encoding["token_type_ids"].shape, (1, 40))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
def test_entity_classification_no_padding_or_truncation(self):
tokenizer = self.entity_classification_tokenizer
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
span = (15, 34)
encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True)
# test words
self.assertEqual(len(encoding["input_ids"]), 23)
self.assertEqual(len(encoding["attention_mask"]), 23)
self.assertEqual(len(encoding["token_type_ids"]), 23)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s> Japanese is an<ent>East Asian language<ent>spoken by about 128 million people, primarily in"
" Japan.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][4:9], spaces_between_special_tokens=False),
"<ent>East Asian language<ent>",
)
# test entities
mask_id = tokenizer.entity_vocab["[MASK]"]
self.assertEqual(encoding["entity_ids"], [mask_id])
self.assertEqual(encoding["entity_attention_mask"], [1])
self.assertEqual(encoding["entity_token_type_ids"], [0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[[4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]]
)
# fmt: on
def test_entity_classification_padding_pytorch_tensors(self):
tokenizer = self.entity_classification_tokenizer
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
span = (15, 34)
encoding = tokenizer(
sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt"
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 512))
self.assertEqual(encoding["attention_mask"].shape, (1, 512))
self.assertEqual(encoding["token_type_ids"].shape, (1, 512))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 1))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1))
self.assertEqual(
encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length)
)
def test_entity_pair_classification_no_padding_or_truncation(self):
tokenizer = self.entity_pair_tokenizer
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
# head and tail information
spans = [(0, 8), (84, 89)]
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s><ent>Japanese<ent>is an East Asian language spoken by about 128 million people, primarily"
" in<ent2>Japan<ent2>.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][1:4], spaces_between_special_tokens=False),
"<ent>Japanese<ent>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][20:23], spaces_between_special_tokens=False), "<ent2>Japan<ent2>"
)
mask_id = tokenizer.entity_vocab["[MASK]"]
mask2_id = tokenizer.entity_vocab["[MASK2]"]
self.assertEqual(encoding["entity_ids"], [mask_id, mask2_id])
self.assertEqual(encoding["entity_attention_mask"], [1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, 2, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[20, 21, 22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
)
# fmt: on
def test_entity_pair_classification_padding_pytorch_tensors(self):
tokenizer = self.entity_pair_tokenizer
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
# head and tail information
spans = [(0, 8), (84, 89)]
encoding = tokenizer(
sentence,
entity_spans=spans,
return_token_type_ids=True,
padding="max_length",
max_length=30,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 2))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2))
self.assertEqual(
encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length)
)
def test_entity_span_classification_no_padding_or_truncation(self):
tokenizer = self.entity_span_tokenizer
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
spans = [(0, 8), (15, 34), (84, 89)]
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s> Japanese is an East Asian language spoken by about 128 million people, primarily in Japan.</s>",
)
mask_id = tokenizer.entity_vocab["[MASK]"]
self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id])
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[18, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]]
)
# fmt: on
self.assertEqual(encoding["entity_start_positions"], [1, 4, 18])
self.assertEqual(encoding["entity_end_positions"], [1, 6, 18])
def test_entity_span_classification_padding_pytorch_tensors(self):
tokenizer = self.entity_span_tokenizer
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
spans = [(0, 8), (15, 34), (84, 89)]
encoding = tokenizer(
sentence,
entity_spans=spans,
return_token_type_ids=True,
padding="max_length",
max_length=30,
max_entity_length=16,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
self.assertEqual(encoding["entity_start_positions"].shape, (1, 16))
self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))